Suppr超能文献

酵母基因组中不同位点DNA错配修复效率的差异。

Variation in efficiency of DNA mismatch repair at different sites in the yeast genome.

作者信息

Hawk Joshua D, Stefanovic Lela, Boyer Jayne C, Petes Thomas D, Farber Rosann A

机构信息

Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8639-43. doi: 10.1073/pnas.0503415102. Epub 2005 Jun 2.

Abstract

Evolutionary studies have suggested that mutation rates vary significantly at different positions in the eukaryotic genome. The mechanism that is responsible for this context-dependence of mutation rates is not understood. We demonstrate experimentally that frameshift mutation rates in yeast microsatellites depend on the genomic context and that this variation primarily reflects the context-dependence of the efficiency of DNA mismatch repair. We measured the stability of a 16.5-repeat polyGT tract by using a reporter gene (URA3-GT) in which the microsatellite was inserted in-frame into the yeast URA3 gene. We constructed 10 isogenic yeast strains with the reporter gene at different locations in the genome. Rates of frameshift mutations that abolished the correct reading frame of this gene were determined by fluctuation analysis. A 16-fold difference was found among these strains. We made mismatch-repair-deficient (msh2) derivatives of six of the strains. Mutation rates were elevated for all of these strains, but the differences in rates among the strains were substantially reduced. The simplest interpretation of this result is that the efficiency of DNA mismatch repair varies in different regions of the genome, perhaps reflecting some aspect of chromosome structure.

摘要

进化研究表明,真核生物基因组中不同位置的突变率差异显著。导致突变率这种上下文依赖性的机制尚不清楚。我们通过实验证明,酵母微卫星中的移码突变率取决于基因组上下文,并且这种变异主要反映了DNA错配修复效率的上下文依赖性。我们使用一个报告基因(URA3-GT)测量了一个16.5重复的聚GT序列的稳定性,其中微卫星以框内方式插入酵母URA3基因。我们构建了10个同基因酵母菌株,报告基因位于基因组的不同位置。通过波动分析确定了使该基因正确阅读框消失的移码突变率。在这些菌株中发现了16倍的差异。我们对其中6个菌株制作了错配修复缺陷(msh2)衍生物。所有这些菌株的突变率都升高了,但菌株间的突变率差异大幅降低。该结果最简单的解释是,DNA错配修复效率在基因组的不同区域有所不同,这可能反映了染色体结构的某些方面。

相似文献

1
Variation in efficiency of DNA mismatch repair at different sites in the yeast genome.
Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8639-43. doi: 10.1073/pnas.0503415102. Epub 2005 Jun 2.
4
Detection of coding microsatellite frameshift mutations in DNA mismatch repair-deficient mouse intestinal tumors.
Mol Carcinog. 2015 Nov;54(11):1376-86. doi: 10.1002/mc.22213. Epub 2014 Sep 11.
6
Frameshift mutation, microsatellites and mismatch repair.
Mutat Res. 1999 Nov;437(3):195-203. doi: 10.1016/s1383-5742(99)00066-6.
7
Development of a yeast-based assay system for monitoring microsatellite instability.
FEMS Microbiol Lett. 1999 Jul 1;176(1):205-12. doi: 10.1111/j.1574-6968.1999.tb13663.x.
8

引用本文的文献

1
The dynamics of loss of heterozygosity events in genomes.
EMBO Rep. 2025 Feb;26(3):602-612. doi: 10.1038/s44319-024-00353-w. Epub 2025 Jan 2.
3
Advances in understanding the evolution of fungal genome architecture.
F1000Res. 2020 Jul 27;9. doi: 10.12688/f1000research.25424.1. eCollection 2020.
4
Effects of Mutations on Microsatellite Stability and Homeologous Recombination in Rice.
Front Plant Sci. 2020 Mar 3;11:220. doi: 10.3389/fpls.2020.00220. eCollection 2020.
5
Cooperation between non-essential DNA polymerases contributes to genome stability in Saccharomyces cerevisiae.
DNA Repair (Amst). 2019 Apr;76:40-49. doi: 10.1016/j.dnarep.2019.02.004. Epub 2019 Feb 6.
6
Coordinated protein and DNA conformational changes govern mismatch repair initiation by MutS.
Nucleic Acids Res. 2018 Nov 16;46(20):10782-10795. doi: 10.1093/nar/gky865.
7
GC content elevates mutation and recombination rates in the yeast .
Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):E7109-E7118. doi: 10.1073/pnas.1807334115. Epub 2018 Jul 9.
8
Molecular phylogeography of East Asian Boea clarkeana (Gesneriaceae) in relation to habitat restriction.
PLoS One. 2018 Jul 3;13(7):e0199780. doi: 10.1371/journal.pone.0199780. eCollection 2018.
9
Muver, a computational framework for accurately calling accumulated mutations.
BMC Genomics. 2018 May 9;19(1):345. doi: 10.1186/s12864-018-4753-3.

本文引用的文献

1
Mismatch repair and DNA damage signalling.
DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1091-101. doi: 10.1016/j.dnarep.2004.06.006.
2
A defined human system that supports bidirectional mismatch-provoked excision.
Mol Cell. 2004 Jul 2;15(1):31-41. doi: 10.1016/j.molcel.2004.06.016.
3
Mutation rates in the complex microsatellite MYCL1 and related simple repeats in cultured human cells.
Mutat Res. 2004 Jan 12;545(1-2):117-26. doi: 10.1016/j.mrfmmm.2003.09.015.
4
Mutation rate variation in the mammalian genome.
Curr Opin Genet Dev. 2003 Dec;13(6):562-8. doi: 10.1016/j.gde.2003.10.008.
5
Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast.
Curr Biol. 2003 Apr 29;13(9):744-8. doi: 10.1016/s0960-9822(03)00284-7.
7
Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution.
Mol Biol Evol. 2002 Jul;19(7):1181-97. doi: 10.1093/oxfordjournals.molbev.a004176.
8
Replication dynamics of the yeast genome.
Science. 2001 Oct 5;294(5540):115-21. doi: 10.1126/science.294.5540.115.
10
Signaling mismatch repair in cancer.
Nat Med. 1999 Nov;5(11):1239-41. doi: 10.1038/15191.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验