School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
J Phys Chem B. 2013 Jul 18;117(28):8457-68. doi: 10.1021/jp404757r. Epub 2013 Jul 3.
Tyrosyl radicals play essential roles in biological proton-coupled electron transfer (PCET) reactions. Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides and is vital in DNA replication in all organisms. Class Ia RNRs consist of α2 and β2 homodimeric subunits. In class Ia RNR, such as the E. coli enzyme, an essential tyrosyl radical (Y122O(•))-diferric cofactor is located in β2. Although Y122O(•) is extremely stable in free β2, Y122O(•) is highly reactive in the quaternary substrate-α2β2 complex and serves as a radical initiator in catalytic PCET between β2 and α2. In this report, we investigate the structural interactions that control the reactivity of Y122O(•) in a model system, isolated E. coli β2. Y122O(•) was reduced with hydroxyurea (HU), a radical scavenger that quenches the radical in a clinically relevant reaction. In the difference FT-IR spectrum, associated with this PCET reaction, amide I (CO) and amide II (CN/NH) bands were observed. Specific (13)C-labeling of the tyrosine C1 carbon assigned a component of these bands to the Y122-T123 amide bond. Comparison to density functional calculations on a model dipeptide, tyrosine-threonine, and structural modeling demonstrated that PCET is associated with a Y122 rotation and a 7.2 Å translation of the Y122 phenolic oxygen. To test for the functional consequences of this structural change, a proton inventory defined the origin of the large solvent isotope effect (SIE = 16.7 ± 1.0 at 25 °C) on this reaction. These data suggest that the one-electron, HU-mediated reduction of Y122O(•) is associated with two, rate-limiting (full or partial) proton transfer reactions. One is attributable to HU oxidation (SIE = 11.9, net H atom transfer), and the other is attributable to coupled, hydrogen-bonding changes in the Y122O(•)-diferric cofactor (SIE = 1.4). These results illustrate the importance of redox-linked changes to backbone and ring dihedral angles in high potential PCET and provide evidence for rate-limiting, redox-linked hydrogen-bonding interactions between Y122O(•) and the iron cluster.
酪氨酸自由基在生物质子耦合电子转移(PCET)反应中起着至关重要的作用。核核苷酸还原酶(RNR)催化核核苷酸的还原,是所有生物中 DNA 复制所必需的。Ia 类 RNR 由α2 和β2 同源二聚体亚基组成。在 Ia 类 RNR 中,例如大肠杆菌酶,一个必需的酪氨酸自由基(Y122O(•))-双铁辅因子位于β2 中。尽管游离的β2 中 Y122O(•)非常稳定,但在四元底物-α2β2 复合物中,Y122O(•)具有很高的反应性,并在β2 和α2 之间的催化 PCET 中充当自由基引发剂。在本报告中,我们研究了控制 Y122O(•)在模型系统(分离的大肠杆菌β2)中反应性的结构相互作用。Y122O(•)用羟脲(HU)还原,HU 是一种在临床相关反应中猝灭自由基的自由基清除剂。在与这种 PCET 反应相关的差 FT-IR 光谱中,观察到酰胺 I(CO)和酰胺 II(CN/NH)带。对酪氨酸 C1 碳的特定(13)C 标记将这些带的一个分量分配给 Y122-T123 酰胺键。与酪氨酸-苏氨酸模型二肽的密度泛函计算的比较以及结构建模表明,PCET 与 Y122 的旋转和 Y122 酚氧的 7.2 Å 平移有关。为了测试这种结构变化的功能后果,质子库存定义了该反应中大溶剂同位素效应(SIE = 16.7 ± 1.0,在 25°C 时)的起源。这些数据表明,Y122O(•)的单电子、HU 介导的还原与两个限速(完全或部分)质子转移反应有关。一个归因于 HU 氧化(SIE = 11.9,净 H 原子转移),另一个归因于 Y122O(•)-双铁辅因子的耦合氢键变化(SIE = 1.4)。这些结果说明了在高势能 PCET 中,氧化还原相关的变化对骨架和环二面角的重要性,并为 Y122O(•)和铁簇之间限速的氧化还原相关氢键相互作用提供了证据。