Zhou Hao, Pei Yongmao, Huang Hu, Zhao Hongwei, Li Faxin, Fang Daining
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China.
Rev Sci Instrum. 2013 Jun;84(6):063906. doi: 10.1063/1.4811779.
Nano∕micro-scale mechanical properties of multiferroic materials can be controlled by the external magnetic or electric field due to the coupling interaction. For the first time, a modularized multi-field nanoindentation apparatus for carrying out testing on materials in external magnetostatic∕electrostatic field is constructed. Technical issues, such as the application of magnetic∕electric field and the processes to diminish the interference between external fields and the other parts of the apparatus, are addressed. Tests on calibration specimen indicate the feasibility of the apparatus. The load-displacement curves of ferromagnetic, ferroelectric, and magnetoelectric materials in the presence∕absence of external fields reveal the small-scale magnetomechanical and electromechanical coupling, showing as the ΔE and ΔHin effects, i.e., the magnetic∕electric field induced changes in the apparent elastic modulus and indentation hardness.
由于耦合相互作用,多铁性材料的纳米/微米级力学性能可通过外部磁场或电场进行控制。首次构建了一种模块化多场纳米压痕装置,用于在外部静磁场/静电场中对材料进行测试。解决了诸如磁场/电场的施加以及减少外部场与装置其他部分之间干扰的过程等技术问题。对标定试样的测试表明了该装置的可行性。铁磁、铁电和磁电材料在有/无外部场情况下的载荷-位移曲线揭示了小尺度磁机械和机电耦合,表现为ΔE和ΔHin效应,即磁场/电场引起的表观弹性模量和压痕硬度的变化。