Physics Department, Duke University, Durham, North Carolina 27708, USA.
Chaos. 2013 Jun;23(2):025104. doi: 10.1063/1.4807733.
A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.
基因调控网络建模的一种常见方法是使用目标基因浓度的常微分方程来表示激活或抑制相互作用,其中包括对调节剂基因浓度的 Hill 函数依赖性。另一种替代方法是使用具有与每个网络链接相关联的时间延迟的布尔逻辑来表示相同的相互作用。我们考虑了在简单但非平凡网络的情况下,两种模型产生的吸引子:一个具有一个正反馈回路和一个负反馈回路的 8 字形网络。我们表明,不同的建模方法产生了相同的定性吸引子集,除了常微分方程模型中可能存在的固定点,其中浓度处于中间值。从布尔角度来看,吸引子的特性最容易理解,这表明时滞布尔建模是理解调控网络逻辑的有用工具。