Inserm (Institut National de la Santé et de la Recherche Médicale), CESP (Centre de recherche en Épidémiologie et Santé des Populations), U1018, Respiratory and Environmental Epidemiology Team, Villejuif, France.
Environ Health Perspect. 2013 Sep;121(9):1054-60. doi: 10.1289/ehp.1206016. Epub 2013 Jul 3.
Errors in address geocodes may affect estimates of the effects of air pollution on health.
We investigated the impact of four geocoding techniques on the association between urban air pollution estimated with a fine-scale (10 m × 10 m) dispersion model and lung function in adults.
We measured forced expiratory volume in 1 sec (FEV1) and forced vital capacity (FVC) in 354 adult residents of Grenoble, France, who were participants in two well-characterized studies, the Epidemiological Study on the Genetics and Environment on Asthma (EGEA) and the European Community Respiratory Health Survey (ECRHS). Home addresses were geocoded using individual building matching as the reference approach and three spatial interpolation approaches. We used a dispersion model to estimate mean PM10 and nitrogen dioxide concentrations at each participant's address during the 12 months preceding their lung function measurements. Associations between exposures and lung function parameters were adjusted for individual confounders and same-day exposure to air pollutants. The geocoding techniques were compared with regard to geographical distances between coordinates, exposure estimates, and associations between the estimated exposures and health effects.
Median distances between coordinates estimated using the building matching and the three interpolation techniques were 26.4, 27.9, and 35.6 m. Compared with exposure estimates based on building matching, PM10 concentrations based on the three interpolation techniques tended to be overestimated. When building matching was used to estimate exposures, a one-interquartile range increase in PM10 (3.0 μg/m3) was associated with a 3.72-point decrease in FVC% predicted (95% CI: -0.56, -6.88) and a 3.86-point decrease in FEV1% predicted (95% CI: -0.14, -3.24). The magnitude of associations decreased when other geocoding approaches were used [e.g., for FVC% predicted -2.81 (95% CI: -0.26, -5.35) using NavTEQ, or 2.08 (95% CI -4.63, 0.47, p = 0.11) using Google Maps].
Our findings suggest that the choice of geocoding technique may influence estimated health effects when air pollution exposures are estimated using a fine-scale exposure model.
地址地理编码错误可能会影响空气污染对健康影响的估计。
我们研究了四种地理编码技术对使用细尺度(10 m×10 m)扩散模型估计的城市空气污染与成年人肺功能之间关联的影响。
我们测量了法国格勒诺布尔 354 名成年居民的 1 秒用力呼气量(FEV1)和用力肺活量(FVC),他们是两项特征明确的研究的参与者,即遗传与环境对哮喘的流行病学研究(EGEA)和欧洲社区呼吸健康调查(ECRHS)。使用个体建筑物匹配作为参考方法和三种空间插值方法对家庭住址进行地理编码。我们使用扩散模型来估计每个参与者在进行肺功能测量前 12 个月内其住址的 PM10 和二氧化氮的平均浓度。在调整个体混杂因素和当日空气污染物暴露后,评估暴露与肺功能参数之间的关联。比较了这些地理编码技术在坐标之间的地理距离、暴露估计值以及估计暴露与健康效应之间的关联。
使用建筑物匹配和三种插值技术估计的坐标之间的中位数距离分别为 26.4、27.9 和 35.6 m。与基于建筑物匹配的暴露估计值相比,基于三种插值技术的 PM10 浓度往往被高估。当使用建筑物匹配来估计暴露时,PM10 每增加一个四分位距(3.0 μg/m3),预测的 FVC%就会下降 3.72 点(95%CI:-0.56,-6.88),预测的 FEV1%就会下降 3.86 点(95%CI:-0.14,-3.24)。当使用其他地理编码方法时,关联的幅度会减小[例如,使用 NavTEQ 时,预测的 FVC%下降 2.81(95%CI:-0.26,-5.35),而使用 Google Maps 时,预测的 FEV1%下降 2.08(95%CI:-4.63,0.47,p = 0.11)]。
我们的研究结果表明,当使用细尺度暴露模型估计空气污染暴露时,地理编码技术的选择可能会影响估计的健康影响。