Harvard School of Public Health, Department of Health Policy and Management, 677 Huntington Avenue, Boston, MA 02115, United States.
Health Policy. 2013 Sep;112(1-2):122-32. doi: 10.1016/j.healthpol.2013.05.023. Epub 2013 Jul 5.
This paper outlines the capabilities of pooled cross-sectional time series methodology for the international comparison of health system performance in population health. It shows how common model specifications can be improved so that they not only better address the specific nature of time series data on population health but are also more closely aligned with our theoretical expectations of the effect of healthcare systems. Three methodological innovations for this field of applied research are discussed: (1) how dynamic models help us understand the timing of effects, (2) how parameter heterogeneity can be used to compare performance across countries, and (3) how multiple imputation can be used to deal with incomplete data. We illustrate these methodological strategies with an analysis of infant mortality rates in 21 OECD countries between 1960 and 2008 using OECD Health Data.
本文概述了汇总横截面时间序列方法在人口健康方面对医疗体系绩效进行国际比较的能力。它展示了如何改进常见的模型规范,以便它们不仅更好地解决人口健康时间序列数据的特定性质,而且更符合我们对医疗体系影响的理论预期。本文讨论了该应用研究领域的三项方法创新:(1)动态模型如何帮助我们了解效应的时间顺序;(2)参数异质性如何用于比较各国的绩效;(3)如何使用多重插补来处理不完整数据。我们使用经合组织卫生数据,分析了 1960 年至 2008 年期间 21 个经合组织国家的婴儿死亡率,说明了这些方法策略。