Suppr超能文献

用于描述人脑结构复杂性的分形测度的稳健估计:优化与可重复性。

Robust estimation of fractal measures for characterizing the structural complexity of the human brain: optimization and reproducibility.

机构信息

Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.

出版信息

Neuroimage. 2013 Dec;83:646-57. doi: 10.1016/j.neuroimage.2013.06.072. Epub 2013 Jul 3.

Abstract

High-resolution isotropic three-dimensional reconstructions of human brain gray and white matter structures can be characterized to quantify aspects of their shape, volume and topological complexity. In particular, methods based on fractal analysis have been applied in neuroimaging studies to quantify the structural complexity of the brain in both healthy and impaired conditions. The usefulness of such measures for characterizing individual differences in brain structure critically depends on their within-subject reproducibility in order to allow the robust detection of between-subject differences. This study analyzes key analytic parameters of three fractal-based methods that rely on the box-counting algorithm with the aim to maximize within-subject reproducibility of the fractal characterizations of different brain objects, including the pial surface, the cortical ribbon volume, the white matter volume and the gray matter/white matter boundary. Two separate datasets originating from different imaging centers were analyzed, comprising 50 subjects with three and 24 subjects with four successive scanning sessions per subject, respectively. The reproducibility of fractal measures was statistically assessed by computing their intra-class correlations. Results reveal differences between different fractal estimators and allow the identification of several parameters that are critical for high reproducibility. Highest reproducibility with intra-class correlations in the range of 0.9-0.95 is achieved with the correlation dimension. Further analyses of the fractal dimensions of parcellated cortical and subcortical gray matter regions suggest robustly estimated and region-specific patterns of individual variability. These results are valuable for defining appropriate parameter configurations when studying changes in fractal descriptors of human brain structure, for instance in studies of neurological diseases that do not allow repeated measurements or for disease-course longitudinal studies.

摘要

高分辨率各向同性三维重建的人脑灰质和白质结构可以进行特征化,以定量分析其形状、体积和拓扑复杂性。特别是,分形分析方法已应用于神经影像学研究,以量化健康和受损条件下大脑的结构复杂性。这些方法对于描述大脑结构的个体差异非常有用,其关键取决于其在个体内的可重复性,以便能够可靠地检测到个体间的差异。本研究分析了三种基于分形的方法的关键分析参数,这些方法都依赖于基于盒子计数算法的分形分析方法,旨在最大程度地提高不同脑对象(包括脑表面、皮质带体积、白质体积和灰质/白质边界)的分形特征在个体内的可重复性。分析了分别来自两个不同成像中心的两个独立数据集,每个数据集包含 50 名受试者,分别进行了三次和四次连续扫描,每个受试者分别进行了三次和四次连续扫描。通过计算组内相关系数来统计评估分形测量的可重复性。结果揭示了不同分形估计器之间的差异,并确定了几个对高可重复性至关重要的参数。相关维数的组内相关系数范围在 0.9-0.95 之间,可重复性最高。对分区皮质和皮质下灰质区域分形维数的进一步分析表明,个体变异具有稳健估计和区域特异性模式。这些结果对于在研究人类大脑结构的分形描述符变化时定义适当的参数配置非常有价值,例如在不允许重复测量的神经疾病研究或疾病过程纵向研究中。

相似文献

2
Fractal dimension analysis of the cortical ribbon in mild Alzheimer's disease.
Neuroimage. 2010 Nov 1;53(2):471-9. doi: 10.1016/j.neuroimage.2010.06.050. Epub 2010 Jun 25.
3
Accurate identification of individuals with subjective cognitive decline using 3D regional fractal dimensions on structural magnetic resonance imaging.
Comput Methods Programs Biomed. 2024 Sep;254:108281. doi: 10.1016/j.cmpb.2024.108281. Epub 2024 Jun 15.
6
Fractal dimension in human cerebellum measured by magnetic resonance imaging.
Biophys J. 2003 Dec;85(6):4041-6. doi: 10.1016/S0006-3495(03)74817-6.
7
Evaluation of the 3D fractal dimension as a marker of structural brain complexity in multiple-acquisition MRI.
Hum Brain Mapp. 2019 Aug 1;40(11):3299-3320. doi: 10.1002/hbm.24599. Epub 2019 May 15.
8
A three-dimensional fractal analysis method for quantifying white matter structure in human brain.
J Neurosci Methods. 2006 Jan 30;150(2):242-53. doi: 10.1016/j.jneumeth.2005.06.021. Epub 2005 Aug 19.
9
Structural brain complexity and cognitive decline in late life--a longitudinal study in the Aberdeen 1936 Birth Cohort.
Neuroimage. 2014 Oct 15;100:558-63. doi: 10.1016/j.neuroimage.2014.06.054. Epub 2014 Jun 30.
10
Fractal dimension analysis of MR images reveals grey matter structure irregularities in schizophrenia.
Comput Med Imaging Graph. 2008 Mar;32(2):150-8. doi: 10.1016/j.compmedimag.2007.10.005. Epub 2007 Dec 18.

引用本文的文献

1
ImageJ in Computational Fractal-Based Neuroscience: Pattern Extraction and Translational Research.
Adv Neurobiol. 2024;36:795-814. doi: 10.1007/978-3-031-47606-8_40.
2
Box-Counting Fractal Analysis: A Primer for the Clinician.
Adv Neurobiol. 2024;36:15-55. doi: 10.1007/978-3-031-47606-8_2.
7
Cortical fractal dimension predicts disability worsening in Multiple Sclerosis patients.
Neuroimage Clin. 2021;30:102653. doi: 10.1016/j.nicl.2021.102653. Epub 2021 Mar 29.
10
Evaluation of the 3D fractal dimension as a marker of structural brain complexity in multiple-acquisition MRI.
Hum Brain Mapp. 2019 Aug 1;40(11):3299-3320. doi: 10.1002/hbm.24599. Epub 2019 May 15.

本文引用的文献

1
Test-retest reliability of a new medial temporal atrophy morphological metric.
Int J Alzheimers Dis. 2012;2012:979804. doi: 10.1155/2012/979804. Epub 2012 Sep 17.
2
Brain structural complexity and life course cognitive change.
Neuroimage. 2012 Jul 2;61(3):694-701. doi: 10.1016/j.neuroimage.2012.03.088. Epub 2012 Apr 10.
4
Test-retest variability underlying fMRI measurements.
Neuroimage. 2012 Mar;60(1):717-27. doi: 10.1016/j.neuroimage.2011.11.061. Epub 2011 Dec 1.
5
The morphology and classification of α ganglion cells in the rat retinae: a fractal analysis study.
J Neurosci Methods. 2011 Sep 30;201(1):281-7. doi: 10.1016/j.jneumeth.2011.07.027. Epub 2011 Aug 4.
7
Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T.
Neuroimage. 2011 Jan 15;54(2):1188-95. doi: 10.1016/j.neuroimage.2010.08.043. Epub 2010 Aug 25.
8
Fractal dimension analysis of the cortical ribbon in mild Alzheimer's disease.
Neuroimage. 2010 Nov 1;53(2):471-9. doi: 10.1016/j.neuroimage.2010.06.050. Epub 2010 Jun 25.
9
Fractal and multifractal analysis: a review.
Med Image Anal. 2009 Aug;13(4):634-49. doi: 10.1016/j.media.2009.05.003. Epub 2009 May 27.
10
Fractal dimension analysis of grey matter in multiple sclerosis.
J Neurol Sci. 2009 Jul 15;282(1-2):67-71. doi: 10.1016/j.jns.2008.12.023. Epub 2009 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验