Suppr超能文献

为了更可靠地描述健康受试者在整个生命周期中大脑皮层的分形特性。

Toward a more reliable characterization of fractal properties of the cerebral cortex of healthy subjects during the lifespan.

机构信息

Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy.

Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy.

出版信息

Sci Rep. 2020 Oct 12;10(1):16957. doi: 10.1038/s41598-020-73961-w.

Abstract

The cerebral cortex manifests an inherent structural complexity of folding. The fractal geometry describes the complexity of structures which show self-similarity in a proper interval of spatial scales. In this study, we aimed at evaluating in-vivo the effect of different criteria for selecting the interval of spatial scales in the estimation of the fractal dimension (FD) of the cerebral cortex in T-weighted magnetic resonance imaging (MRI). We compared four different strategies, including two a priori selections of the interval of spatial scales, an automated selection of the spatial scales within which the cerebral cortex manifests the highest statistical self-similarity, and an improved approach, based on the search of the interval of spatial scales which presents the highest rounded R coefficient and, in case of equal rounded R coefficient, preferring the widest interval in the log-log plot. We employed two public and international datasets of in-vivo MRI scans for a total of 159 healthy subjects (age range 6-85 years). The improved approach showed strong associations of FD with age and yielded the most accurate machine learning models for individual age prediction in both datasets. Our results indicate that the selection of the interval of spatial scales of the cerebral cortex is thus critical in the estimation of FD.

摘要

大脑皮层表现出固有折叠的结构复杂性。分形几何描述了在适当的空间尺度间隔内显示自相似性的结构的复杂性。在这项研究中,我们旨在评估在 T 加权磁共振成像 (MRI) 中估计大脑皮层分形维数 (FD) 时,选择空间尺度间隔的不同标准对体内的影响。我们比较了四种不同的策略,包括空间尺度间隔的两个先验选择、自动选择大脑皮层表现出最高统计自相似性的空间尺度,以及一种改进的方法,基于搜索呈现最高圆形 R 系数的空间尺度间隔,并且在具有相等圆形 R 系数的情况下,优先选择对数-对数图中的最宽间隔。我们使用了两个公开的国际体内 MRI 扫描数据集,共包含 159 名健康受试者(年龄范围 6-85 岁)。改进的方法显示 FD 与年龄具有很强的相关性,并在两个数据集中为个体年龄预测生成了最准确的机器学习模型。我们的结果表明,因此,选择大脑皮层的空间尺度间隔在 FD 的估计中至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83f9/7550568/7ecc88991642/41598_2020_73961_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验