Suppr超能文献

脑白质分形维数:小血管病和轻度认知障碍患者认知表现预测的一致特征。

Fractal dimension of cerebral white matter: A consistent feature for prediction of the cognitive performance in patients with small vessel disease and mild cognitive impairment.

机构信息

'L. Sacco' Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.

Department of Electrical, Electronic, and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy.

出版信息

Neuroimage Clin. 2019;24:101990. doi: 10.1016/j.nicl.2019.101990. Epub 2019 Aug 22.

Abstract

Patients with cerebral small vessel disease (SVD) frequently show decline in cognitive performance. However, neuroimaging in SVD patients discloses a wide range of brain lesions and alterations so that it is often difficult to understand which of these changes are the most relevant for cognitive decline. It has also become evident that visually-rated alterations do not fully explain the neuroimaging correlates of cognitive decline in SVD. Fractal dimension (FD), a unitless feature of structural complexity that can be computed from high-resolution T-weighted images, has been recently applied to the neuroimaging evaluation of the human brain. Indeed, white matter (WM) and cortical gray matter (GM) exhibit an inherent structural complexity that can be measured through the FD. In our study, we included 64 patients (mean age ± standard deviation, 74.6 ± 6.9, education 7.9 ± 4.2 years, 53% males) with SVD and mild cognitive impairment (MCI), and a control group of 24 healthy subjects (mean age ± standard deviation, 72.3 ± 4.4 years, 50% males). With the aim of assessing whether the FD values of cerebral WM (WM FD) and cortical GM (GM FD) could be valuable structural predictors of cognitive performance in patients with SVD and MCI, we employed a machine learning strategy based on LASSO (least absolute shrinkage and selection operator) regression applied on a set of standard and advanced neuroimaging features in a nested cross-validation (CV) loop. This approach was aimed at 1) choosing the best predictive models, able to reliably predict the individual neuropsychological scores sensitive to attention and executive dysfunctions (prominent features of subcortical vascular cognitive impairment) and 2) identifying a features ranking according to their importance in the model through the assessment of the out-of-sample error. For each neuropsychological test, using 1000 repetitions of LASSO regression and 5000 random permutations, we found that the statistically significant models were those for the Montreal Cognitive Assessment scores (p-value = .039), Symbol Digit Modalities Test scores (p-value = .039), and Trail Making Test Part A scores (p-value = .025). Significant prediction of these scores was obtained using different sets of neuroimaging features in which the WM FD was the most frequently selected feature. In conclusion, we showed that a machine learning approach could be useful in SVD research field using standard and advanced neuroimaging features. Our study results raise the possibility that FD may represent a consistent feature in predicting cognitive decline in SVD that can complement standard imaging.

摘要

患有脑小血管病(SVD)的患者经常表现出认知能力下降。然而,SVD 患者的神经影像学显示出广泛的脑损伤和改变,因此很难理解哪些变化与认知能力下降最相关。已经很明显,视觉评定的改变并不能完全解释 SVD 患者认知能力下降的神经影像学相关性。分形维数(FD)是一种结构复杂性的无单位特征,可以从高分辨率 T 加权图像中计算出来,最近已应用于人类大脑的神经影像学评估。事实上,白质(WM)和皮质灰质(GM)表现出固有的结构复杂性,可以通过 FD 来测量。在我们的研究中,我们纳入了 64 名 SVD 和轻度认知障碍(MCI)患者(平均年龄±标准差,74.6±6.9 岁,教育年限 7.9±4.2 年,53%为男性)和 24 名健康对照组(平均年龄±标准差,72.3±4.4 岁,50%为男性)。为了评估脑 WM(WM FD)和皮质 GM(GM FD)的 FD 值是否可以作为 SVD 和 MCI 患者认知表现的有价值的结构预测指标,我们采用了一种基于 LASSO(最小绝对收缩和选择算子)回归的机器学习策略,该策略应用于嵌套交叉验证(CV)循环中的一组标准和先进的神经影像学特征。该方法旨在 1)选择最佳预测模型,能够可靠地预测对注意力和执行功能障碍敏感的个体神经心理学评分(皮质下血管性认知障碍的突出特征);2)根据对样本外误差的评估,根据特征在模型中的重要性对特征进行排序。对于每项神经心理学测试,我们使用 LASSO 回归的 1000 次重复和 5000 次随机排列,发现具有统计学意义的模型是蒙特利尔认知评估评分(p 值=0.039)、符号数字模态测试评分(p 值=0.039)和连线测试 A 部分评分(p 值=0.025)。使用不同的神经影像学特征集,WM FD 是最常被选择的特征,这些评分得到了显著的预测。总之,我们表明,机器学习方法可以使用标准和先进的神经影像学特征在 SVD 研究领域中发挥作用。我们的研究结果提出了 FD 可能代表 SVD 中预测认知能力下降的一致特征的可能性,它可以补充标准成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22fc/6731209/b0ac96448d65/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验