Suppr超能文献

DNA 纳米结构在“关闭”和“打开”状态之间的可逆开关及其生物传感应用。

Reversible switches of DNA nanostructures between "Closed" and "Open" states and their biosensing applications.

机构信息

Institute of Analytical Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi 710069, China.

出版信息

Nanoscale. 2013 Aug 21;5(16):7505-11. doi: 10.1039/c3nr01576a. Epub 2013 Jul 8.

Abstract

A novel and versatile biosensing platform based on the structural conversion of 3D DNA nanostructures from ETDNA (Equilateral Triangle) to TPFDNA (Triangular Pyramid Frustum) was proposed for the first time. The inputs of aptamers and their relative targets made the DNA structure change from the "Open" to the "Closed" state, leading to the faradaic impedance changes as the output signals. The specific properties of excellent stability and specific rigid structure of 3D DNA nanostructures made the biosensor function as a regenerable, reusable and intelligent platform. The sensor exhibited excellent selectivity for IFN-γ detection with a wide linear range of 1.0 × 10(-9) to 2.0 × 10(-6) M and a low detection limit of 5.2 × 10(-10) M. The distinctive features of DNA nanostructures make them potentially advantageous for a broad range of biosensing, bionanoelectronics, and therapeutic applications.

摘要

首次提出了一种新颖且多功能的生物传感平台,该平台基于 3D DNA 纳米结构从 ETDNA(等边三角形)到 TPFDNA(三棱台)的结构转换。适体及其相对靶标作为输入使 DNA 结构从“打开”状态变为“关闭”状态,从而导致作为输出信号的法拉第阻抗变化。3D DNA 纳米结构具有出色的稳定性和特定的刚性结构的特性,使生物传感器具有可再生、可重复使用和智能平台的功能。该传感器在 IFN-γ检测方面表现出优异的选择性,线性范围为 1.0×10^(-9)至 2.0×10^(-6) M,检测限低至 5.2×10^(-10) M。DNA 纳米结构的独特特征使它们在广泛的生物传感、生物纳米电子学和治疗应用中具有潜在的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验