Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
Chem Soc Rev. 2014 Jan 21;43(2):518-29. doi: 10.1039/c3cs60264h.
Recent developments in nanoscience research have demonstrated that DNA switches (rationally designed DNA nanostructures) constitute a class of versatile building blocks for the fabrication and assembly of electronic devices and sensors at the nanoscale. Functional DNA sequences and structures such as aptamers, DNAzymes, G-quadruplexes, and i-motifs can be readily prepared in vitro, and subsequently adapted to an electrochemical platform by coupling with redox reporters. The conformational or conduction switching of such electrode-bound DNA modules in response to an external stimulus can then be monitored by conventional voltammetric measurements. In this review, we describe how we are able to design and examine functional DNA switches, particularly those systems that utilize electrochemical signaling. We also discuss different available options for labeling functional DNA with redox reporters, and comment on the function-oriented signaling pathways.
纳米科学研究的最新进展表明,DNA 开关(经过合理设计的 DNA 纳米结构)是在纳米尺度上制造和组装电子设备和传感器的一类多功能构建模块。适体、DNA 酶、G-四链体和 i-motif 等功能 DNA 序列和结构可以在体外轻松制备,并通过与氧化还原报告分子偶联,随后适用于电化学平台。然后,可以通过常规伏安法测量来监测此类电极结合 DNA 模块对外界刺激的构象或传导开关。在这篇综述中,我们描述了如何设计和检查功能 DNA 开关,特别是那些利用电化学信号的系统。我们还讨论了用氧化还原报告分子标记功能 DNA 的不同可用选项,并评论了面向功能的信号通路。