Suppr超能文献

基于数字化胸片小波纹理特征的尘肺病诊断支持向量机模型

Support vector machine model for diagnosing pneumoconiosis based on wavelet texture features of digital chest radiographs.

作者信息

Zhu Biyun, Chen Hui, Chen Budong, Xu Yan, Zhang Kuan

机构信息

School of Biomedical Engineering, Capital Medical University, No. 10 Xitoutiao, YouAnMen, Fengtai District, Beijing, 100069, China.

出版信息

J Digit Imaging. 2014 Feb;27(1):90-7. doi: 10.1007/s10278-013-9620-9.

Abstract

This study aims to explore the classification ability of decision trees (DTs) and support vector machines (SVMs) to discriminate between the digital chest radiographs (DRs) of pneumoconiosis patients and control subjects. Twenty-eight wavelet-based energy texture features were calculated at the lung fields on DRs of 85 healthy controls and 40 patients with stage I and stage II pneumoconiosis. DTs with algorithm C5.0 and SVMs with four different kernels were trained by samples with two combinations of the texture features to classify a DR as of a healthy subject or of a patient with pneumoconiosis. All of the models were developed with fivefold cross-validation, and the final performances of each model were compared by the area under receiver operating characteristic (ROC) curve. For both SVM (with a radial basis function kernel) and DT (with algorithm C5.0), areas under ROC curves (AUCs) were 0.94 ± 0.02 and 0.86 ± 0.04 (P = 0.02) when using the full feature set and 0.95 ± 0.02 and 0.88 ± 0.04 (P = 0.05) when using the selected feature set, respectively. When built on the selected texture features, the SVM with a polynomial kernel showed a higher diagnostic performance with an AUC value of 0.97 ± 0.02 than SVMs with a linear kernel, a radial basis function kernel and a sigmoid kernel with AUC values of 0.96 ± 0.02 (P = 0.37), 0.95 ± 0.02 (P = 0.24), and 0.90 ± 0.03 (P = 0.01), respectively. The SVM model with a polynomial kernel built on the selected feature set showed the highest diagnostic performance among all tested models when using either all the wavelet texture features or the selected ones. The model has a good potential in diagnosing pneumoconiosis based on digital chest radiographs.

摘要

本研究旨在探讨决策树(DTs)和支持向量机(SVMs)对尘肺病患者与对照者的数字化胸部X线片(DRs)进行鉴别的分类能力。在85名健康对照者和40例Ⅰ期及Ⅱ期尘肺病患者的DRs的肺野区域计算了28个基于小波的能量纹理特征。采用算法C5.0的DTs和具有四种不同核函数的SVMs,通过两种纹理特征组合的样本进行训练,以将DR分类为健康受试者或尘肺病患者。所有模型均采用五折交叉验证开发,并通过受试者操作特征(ROC)曲线下面积比较每个模型的最终性能。对于支持向量机(采用径向基函数核)和决策树(采用算法C5.0),当使用完整特征集时,ROC曲线下面积(AUCs)分别为0.94±0.02和0.86±0.04(P = 0.02),当使用选定特征集时,分别为0.95± 0.02和0.88±0.04(P = 0.05)。基于选定的纹理特征构建时,采用多项式核的支持向量机显示出比采用线性核、径向基函数核和Sigmoid核的支持向量机更高的诊断性能,其AUC值分别为0.97±0.02,而采用线性核、径向基函数核和Sigmoid核的支持向量机的AUC值分别为0.96±0.02(P = 0.37)、0.95±0.02(P = 0.24)和0.90±0.03(P = 0.01)。基于选定特征集构建的采用多项式核的支持向量机模型在使用所有小波纹理特征或选定特征时,在所有测试模型中显示出最高的诊断性能。该模型在基于数字化胸部X线片诊断尘肺病方面具有良好的潜力。

相似文献

3
An automatic computer-aided detection scheme for pneumoconiosis on digital chest radiographs.
J Digit Imaging. 2011 Jun;24(3):382-93. doi: 10.1007/s10278-010-9276-7.
4
Intelligent Image Diagnosis of Pneumoconiosis Based on Wavelet Transform-Derived Texture Features.
Comput Math Methods Med. 2022 Mar 17;2022:2037019. doi: 10.1155/2022/2037019. eCollection 2022.
6
Comparison of digital with film radiographs for the classification of pneumoconiotic pleural abnormalities.
Acad Radiol. 2012 Feb;19(2):131-40. doi: 10.1016/j.acra.2011.10.002. Epub 2011 Nov 18.
7
Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography.
Occup Environ Med. 2020 Sep;77(9):597-602. doi: 10.1136/oemed-2019-106386. Epub 2020 May 29.

引用本文的文献

1
A Systematic Review of Artificial Intelligence Applications in the Management of Lung Disorders.
Cureus. 2024 Jan 3;16(1):e51581. doi: 10.7759/cureus.51581. eCollection 2024 Jan.
2
Detection and Visualisation of Pneumoconiosis Using an Ensemble of Multi-Dimensional Deep Features Learned from Chest X-rays.
Int J Environ Res Public Health. 2022 Sep 6;19(18):11193. doi: 10.3390/ijerph191811193.
4
Balanced Convolutional Neural Networks for Pneumoconiosis Detection.
Int J Environ Res Public Health. 2021 Aug 28;18(17):9091. doi: 10.3390/ijerph18179091.

本文引用的文献

4
An automatic computer-aided detection scheme for pneumoconiosis on digital chest radiographs.
J Digit Imaging. 2011 Jun;24(3):382-93. doi: 10.1007/s10278-010-9276-7.
7
8
Predicting breast cancer survivability: a comparison of three data mining methods.
Artif Intell Med. 2005 Jun;34(2):113-27. doi: 10.1016/j.artmed.2004.07.002.
9
Computer classification of pneumoconiosis from radiographs of coal workers.
IEEE Trans Biomed Eng. 1975 Nov;22(6):518-27. doi: 10.1109/tbme.1975.324475.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验