Suppr超能文献

基于胸部 X 射线多维深度学习特征的集合检测与可视化尘肺病。

Detection and Visualisation of Pneumoconiosis Using an Ensemble of Multi-Dimensional Deep Features Learned from Chest X-rays.

机构信息

School of Information and Physical Sciences, The University of Newcastle, Newcastle 2308, Australia.

British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.

出版信息

Int J Environ Res Public Health. 2022 Sep 6;19(18):11193. doi: 10.3390/ijerph191811193.

Abstract

Pneumoconiosis is a group of occupational lung diseases induced by mineral dust inhalation and subsequent lung tissue reactions. It can eventually cause irreparable lung damage, as well as gradual and permanent physical impairments. It has affected millions of workers in hazardous industries throughout the world, and it is a leading cause of occupational death. It is difficult to diagnose early pneumoconiosis because of the low sensitivity of chest radiographs, the wide variation in interpretation between and among readers, and the scarcity of B-readers, which all add to the difficulty in diagnosing these occupational illnesses. In recent years, deep machine learning algorithms have been extremely successful at classifying and localising abnormality of medical images. In this study, we proposed an ensemble learning approach to improve pneumoconiosis detection in chest X-rays (CXRs) using nine machine learning classifiers and multi-dimensional deep features extracted using CheXNet-121 architecture. There were eight evaluation metrics utilised for each high-level feature set of the associated cross-validation datasets in order to compare the ensemble performance and state-of-the-art techniques from the literature that used the same cross-validation datasets. It is observed that integrated ensemble learning exhibits promising results (92.68% accuracy, 85.66% Matthews correlation coefficient (MCC), and 0.9302 area under the precision-recall (PR) curve), compared to individual CheXNet-121 and other state-of-the-art techniques. Finally, Grad-CAM was used to visualise the learned behaviour of individual dense blocks within CheXNet-121 and their ensembles into three-color channels of CXRs. We compared the Grad-CAM-indicated ROI to the ground-truth ROI using the intersection of the union (IOU) and average-precision (AP) values for each classifier and their ensemble. Through the visualisation of the Grad-CAM within the blue channel, the average IOU passed more than 90% of the pneumoconiosis detection in chest radiographs.

摘要

尘肺是一组由吸入矿物粉尘和随后的肺组织反应引起的职业性肺部疾病。它最终会导致不可挽回的肺部损伤,以及逐渐和永久性的身体损伤。它已经影响了全球危险行业的数百万工人,是职业死亡的主要原因。由于胸部 X 光片的低灵敏度、读者之间和读者内部解释的广泛差异以及 B 读者的稀缺性,早期尘肺病的诊断变得困难,这一切都增加了诊断这些职业疾病的难度。近年来,深度学习算法在医学图像的分类和定位异常方面取得了极大的成功。在这项研究中,我们提出了一种集成学习方法,使用九种机器学习分类器和使用 CheXNet-121 架构提取的多维深度特征,来提高胸部 X 光(CXR)中的尘肺病检测。为了比较集成性能和使用相同交叉验证数据集的文献中的最新技术,针对相关交叉验证数据集的每个高级特征集,使用了八个评估指标。观察到,与单个 CheXNet-121 和其他最新技术相比,集成学习表现出有希望的结果(92.68%的准确性、85.66%的马修斯相关系数(MCC)和 0.9302 的精确召回率(PR)曲线下面积)。最后,使用 Grad-CAM 将 CheXNet-121 内部和它们的集成中的单个密集块的学习行为可视化到 CXR 的三个颜色通道中。我们使用每个分类器及其集成的交并比(IOU)和平均精度(AP)值,将 Grad-CAM 指示的感兴趣区域(ROI)与地面真实 ROI 进行比较。通过在蓝色通道内可视化 Grad-CAM,平均 IOU 通过了超过 90%的胸部 X 光片中的尘肺病检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aea/9517617/15f7d0495b98/ijerph-19-11193-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验