Suppr超能文献

将细菌蛋白质相互作用网络的知识转移到预测病原体靶向人类基因和免疫信号通路:以结核分枝杆菌为例的研究。

Transferring knowledge of bacterial protein interaction networks to predict pathogen targeted human genes and immune signaling pathways: a case study on M. tuberculosis.

机构信息

Software College, Shenyang Normal University, Shenyang, 110034, China.

Department of Pathology, Tulane Cancer Center, Tulane University, New Orleans, LA, 70112, USA.

出版信息

BMC Genomics. 2018 Jun 28;19(1):505. doi: 10.1186/s12864-018-4873-9.

Abstract

BACKGROUND

Bacterial invasive infection and host immune response is fundamental to the understanding of pathogen pathogenesis and the discovery of effective therapeutic drugs. However, there are very few experimental studies on the signaling cross-talks between bacteria and human host to date.

METHODS

In this work, taking M. tuberculosis H37Rv (MTB) that is co-evolving with its human host as an example, we propose a general computational framework that exploits the known bacterial pathogen protein interaction networks in STRING database to predict pathogen-host protein interactions and their signaling cross-talks. In this framework, significant interlogs are derived from the known pathogen protein interaction networks to train a predictive l-regularized logistic regression model.

RESULTS

The computational results show that the proposed method achieves excellent performance of cross validation as well as low predicted positive rates on the less significant interlogs and non-interlogs, indicating a low risk of false discovery. We further conduct gene ontology (GO) and pathway enrichment analyses of the predicted pathogen-host protein interaction networks, which potentially provides insights into the machinery that M. tuberculosis H37Rv targets human genes and signaling pathways. In addition, we analyse the pathogen-host protein interactions related to drug resistance, inhibition of which potentially provides an alternative solution to M. tuberculosis H37Rv drug resistance.

CONCLUSIONS

The proposed machine learning framework has been verified effective for predicting bacteria-host protein interactions via known bacterial protein interaction networks. For a vast majority of bacterial pathogens that lacks experimental studies of bacteria-host protein interactions, this framework is supposed to achieve a general-purpose applicability. The predicted protein interaction networks between M. tuberculosis H37Rv and Homo sapiens, provided in the Additional files, promise to gain applications in the two fields: (1) providing an alternative solution to drug resistance; (2) revealing the patterns that M. tuberculosis H37Rv genes target human immune signaling pathways.

摘要

背景

细菌的侵袭性感染和宿主免疫反应是理解病原体发病机制和发现有效治疗药物的基础。然而,迄今为止,关于细菌与人宿主之间信号交叉对话的实验研究非常少。

方法

在这项工作中,以与人宿主共同进化的结核分枝杆菌 H37Rv(MTB)为例,我们提出了一种通用的计算框架,该框架利用 STRING 数据库中已知的细菌病原体蛋白质相互作用网络来预测病原体-宿主蛋白质相互作用及其信号交叉对话。在该框架中,从已知的病原体蛋白质相互作用网络中提取显著的相互作用来训练一个预测的 l-正则逻辑回归模型。

结果

计算结果表明,该方法在交叉验证中表现出色,并且在不太显著的相互作用和非相互作用上的预测阳性率较低,表明假阳性率较低。我们进一步对预测的病原体-宿主蛋白质相互作用网络进行基因本体(GO)和途径富集分析,这可能为结核分枝杆菌 H37Rv 靶向人类基因和信号通路的机制提供了一些见解。此外,我们分析了与耐药性相关的病原体-宿主蛋白质相互作用,抑制这些相互作用可能为结核分枝杆菌 H37Rv 的耐药性提供另一种解决方案。

结论

该机器学习框架已被证明通过已知的细菌蛋白质相互作用网络有效地预测细菌-宿主蛋白质相互作用是有效的。对于绝大多数缺乏细菌-宿主蛋白质相互作用实验研究的细菌病原体,该框架应该具有普遍适用性。提供的结核分枝杆菌 H37Rv 与智人之间的预测蛋白质相互作用网络,有望在以下两个领域得到应用:(1)为耐药性提供另一种解决方案;(2)揭示结核分枝杆菌 H37Rv 基因靶向人类免疫信号通路的模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0871/6027805/89e77651066a/12864_2018_4873_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验