Vision Discovery Institute, Georgia Regents University , Augusta, GA , USA ; Vascular Biology Center, Georgia Regents University , Augusta, GA , USA.
Front Immunol. 2013 Jul 3;4:173. doi: 10.3389/fimmu.2013.00173. eCollection 2013.
We have shown previously that diabetes causes increases in retinal arginase activity that are associated with impairment of endothelial cell (EC)-dependent vasodilation and increased formation of the peroxynitrite biomarker nitrotyrosine. Arginase blockade normalizes vasodilation responses and reduces nitrotyrosine formation, suggesting that overactive arginase contributes to diabetic retinopathy by reducing NO and increasing oxidative stress. We tested this hypothesis by studies in streptozotocin-induced diabetic mice and high glucose (HG) treated retinal ECs. Our results show that arginase activity is increased in both diabetic retinas and HG-treated retinal ECs as compared with the controls. Western blot shows that both arginase isoforms are present in retinal vessels and ECs and arginase I is increased in the diabetic vessels and HG-treated retinal ECs. Nitrate/nitrite levels are significantly increased in diabetic retinas, indicating an increase in total NO products. However, levels of nitrite, an indicator of bioavailable NO, are reduced by diabetes. Imaging analysis of NO formation in retinal sections confirmed decreases in NO formation in diabetic retinas. The decrease in NO is accompanied by increased [Formula: see text] formation and increased leukocyte attachment in retinal vessels. Studies in knockout mice show that arginase gene deletion enhances NO formation, reduces [Formula: see text] and prevents leukostasis in the diabetic retinas. HG treatment of retinal ECs also reduces NO release, increases oxidative stress, increases ICAM-1, and induces EC death. Arginase inhibitor treatment reverses these effects. In conclusion, diabetes- and HG-induced signs of retinal vascular activation and injury are associated with increased arginase activity and expression, decreased bioavailable NO, and increased [Formula: see text] formation. Blockade of the arginase pathway prevents these alterations, suggesting a primary role of arginase in the pathophysiological process.
我们之前已经证明,糖尿病会导致视网膜精氨酸酶活性增加,这与内皮细胞(EC)依赖性血管舒张功能障碍和过氧亚硝酸盐生物标志物硝基酪氨酸形成增加有关。精氨酸酶阻断可使血管舒张反应正常化并减少硝基酪氨酸的形成,这表明过度活跃的精氨酸酶通过减少 NO 和增加氧化应激导致糖尿病视网膜病变。我们通过链脲佐菌素诱导的糖尿病小鼠和高葡萄糖(HG)处理的视网膜 EC 研究来检验这一假设。我们的结果表明,与对照组相比,糖尿病视网膜和 HG 处理的视网膜 EC 中的精氨酸酶活性均增加。Western blot 显示两种精氨酸酶同工酶均存在于视网膜血管和 EC 中,并且在糖尿病血管和 HG 处理的视网膜 EC 中精氨酸酶 I 增加。糖尿病视网膜中的硝酸盐/亚硝酸盐水平显着增加,表明总 NO 产物增加。然而,生物可利用的 NO 的指示物亚硝酸盐的水平因糖尿病而降低。视网膜切片中 NO 形成的成像分析证实了糖尿病视网膜中 NO 形成的减少。NO 的减少伴随着 [Formula: see text] 的形成增加和视网膜血管中白细胞附着的增加。在基因敲除小鼠中的研究表明,精氨酸酶基因缺失可增强 NO 的形成,减少 [Formula: see text] 的形成,并防止糖尿病视网膜中的白细胞淤滞。HG 处理的视网膜 EC 还会减少 NO 的释放,增加氧化应激,增加 ICAM-1 并诱导 EC 死亡。精氨酸酶抑制剂治疗可逆转这些作用。总之,糖尿病和 HG 诱导的视网膜血管激活和损伤的迹象与精氨酸酶活性和表达增加,生物可利用的 NO 减少以及 [Formula: see text] 的形成增加有关。阻断精氨酸酶途径可防止这些改变,表明精氨酸酶在病理生理过程中起主要作用。