Suppr超能文献

深入了解原始口袋配体对分类:一种用于预测配体特征的有前途的工具。

Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

机构信息

INSERM, UMRS 973, MTi, Paris, France.

出版信息

PLoS One. 2013 Jun 20;8(6):e63730. doi: 10.1371/journal.pone.0063730. Print 2013.

Abstract

Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket properties for ligand binding.

摘要

口袋是现代药物发现项目的基石,也是结构生物学到数学建模等多个研究领域的交汇点。能够预测小分子是否可以与一个或多个蛋白质靶标结合,或者蛋白质是否可以与某些给定的配体结合,对于药物发现工作非常有用,可以预测与脱靶和反靶的结合。迄今为止,已有几项研究从化学生物组学方法到反向对接方法探讨了这些问题。这些研究大多是从配体或靶标的角度进行的。然而,利用配体和靶标结合口袋的信息似乎很有价值。因此,我们提出了一种多元方法,通过分析已知的配体-蛋白相互作用,将配体性质与蛋白口袋性质联系起来。我们通过结合口袋和配体描述符,使用主成分分析来探索和优化口袋-配体对空间,并在此配对空间上开发了一个分类引擎,揭示了具有特定和相似结构或物理化学性质的五个口袋-配体对主要簇。这些口袋-配体对簇突出了口袋和配体拓扑和物理化学性质之间的对应关系,并捕获了与蛋白质-配体相互作用相关的信息。基于这些口袋-配体对应关系,为给定的口袋-配体复合物开发了一种基于相似性识别特征的预测簇的方案,并取得了很高的性能。然后将其扩展到给定口袋的簇预测,以获取关于其预期配体特征的知识,或者到给定配体的簇预测,以获取关于其预期口袋特征的知识。这种预测方法显示出有希望的结果,可以有助于预测一些对于与给定口袋结合至关重要的配体性质,反之亦然,一些对于配体结合关键的口袋性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1310/3688729/27d5325a6766/pone.0063730.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验