Department of Pharmaceutics and Pharmaceutical Chemistry, The University of Utah, Salt Lake City, 84112, USA.
Biomacromolecules. 2013 Aug 12;14(8):2570-81. doi: 10.1021/bm400337f. Epub 2013 Jul 11.
Despite the numerous vital functions of proteins in the cytosolic compartment, less attention has been paid to the delivery of protein drugs to the cytosol than to the plasma membrane. To address this issue and effectively deliver charged proteins into the cytoplasm, we used endosomolytic, thiol-triggered degradable polyelectrolytes as carriers. The cationic, reducible polyelectrolyte RPC-bPEI(0.8 kDa)2 was synthesized by the oxidative polymerization of thiolated branched polyethyleneimine (bPEI). The polymer was converted to the anionic, reducible polyelectrolyte RPA-bPEI(0.8 kDa)2 by introducing carboxylic acids. The two reducible polyelectrolytes (RPC-bPEI(0.8 kDa)2 and RPA-bPEI(0.8 kDa)2) were complexed with counter-charged model proteins (bovine serum albumin (BSA) and lysozyme (LYZ)), forming polyelectrolyte/protein complexes of less than 200 nm in size at weight ratios (WR) of ≥1. The resultant complexes maintained a proton buffering capacity nearly equivalent to that of the polyelectrolytes in the absence of protein complexation and were cytocompatible with MCF7 human breast carcinoma cells. Under cytosol-mimicking thiol-rich conditions, RPC-bPEI(0.8 kDa)2/BSA and RPA-bPEI(0.8 kDa)2/LYZ complexes increased significantly in size and released the loaded protein, unlike the protein complexes with nonreducible polyelectrolytes (bPEI(25 kDa) and bPEI(25 kDa)COOH). The polyelectrolyte/protein complexes showed cellular uptake similar to that of the corresponding proteins alone, but the former allowed more protein to escape into the cytosol from endolysosomes than the latter as a result of the endosomolytic function of the polyelectrolytes. In addition, the proteins in the polyelectrolyte/protein complexes kept their intrinsic secondary structures. In conclusion, the results show the potential of the designed endosomolytic, reducible polyelectrolytes for the delivery of proteins to the cytosol.
尽管蛋白质在细胞质基质中具有许多重要的功能,但与质膜相比,人们对蛋白质药物递送到细胞质的关注较少。为了解决这个问题,并有效地将带电荷的蛋白质递送到细胞质中,我们使用了具有溶酶体作用的、巯基触发的可降解聚电解质作为载体。阳离子、可还原的聚电解质 RPC-bPEI(0.8 kDa)2 是通过巯基化的支化聚乙烯亚胺(bPEI)的氧化聚合合成的。通过引入羧酸,将聚合物转化为阴离子、可还原的聚电解质 RPA-bPEI(0.8 kDa)2。两种可还原的聚电解质(RPC-bPEI(0.8 kDa)2 和 RPA-bPEI(0.8 kDa)2)与带相反电荷的模型蛋白(牛血清白蛋白(BSA)和溶菌酶(LYZ))复合,在重量比(WR)≥1 时形成小于 200nm 的聚电解质/蛋白复合物。所得复合物在没有蛋白复合的情况下保持几乎与聚电解质相同的质子缓冲能力,并且与 MCF7 人乳腺癌细胞相容。在模拟细胞质富含巯基的条件下,RPC-bPEI(0.8 kDa)2/BSA 和 RPA-bPEI(0.8 kDa)2/LYZ 复合物显著增大并释放负载的蛋白,与不可还原的聚电解质(bPEI(25 kDa)和 bPEI(25 kDa)COOH)的蛋白复合物不同。聚电解质/蛋白复合物的细胞摄取与相应蛋白单独摄取相似,但由于聚电解质的溶酶体作用,前者使更多的蛋白从内溶酶体逃逸到细胞质中。此外,聚电解质/蛋白复合物中的蛋白保持其固有二级结构。总之,结果表明设计的具有溶酶体作用的、可还原的聚电解质在将蛋白递送到细胞质中具有潜力。