Suppr超能文献

通过生物催化作用生产甲酸盐。

Formate production through biocatalysis.

机构信息

CSIRO Biofuels Research Cluster; Research School of Chemistry; Australian National University; Canberra, Australia.

出版信息

Bioengineered. 2013 Sep-Oct;4(5):348-50. doi: 10.4161/bioe.25360. Epub 2013 Jun 21.

Abstract

The generation of formate from CO₂ provides a method for sequestration of this greenhouse gas as well as the production of a valuable commodity chemical and stabilized form of hydrogen fuel. Formate dehydrogenases are enzymes with the potential to catalyze this reaction; however they generally favor the reverse process, i.e., formate oxidation. By contrast, the formate dehydrogenase of the acetogen Clostridium carboxidivorans has been found to preferentially catalyze the reduction of CO₂. This is in accord with its natural role to introduce CO₂ as a carbon source in the Wood-Ljungdahl pathway. The direction of catalysis derives from the enzyme's low affinity for formate. This enzyme is therefore an excellent candidate for biotechnological applications aimed at producing formic acid and derivative chemicals from CO₂.

摘要

从 CO₂ 生成甲酸盐为封存这种温室气体提供了一种方法,同时也为生产有价值的商品化学品和稳定的氢燃料提供了一种方法。甲酸盐脱氢酶是具有催化该反应潜力的酶;然而,它们通常更倾向于相反的过程,即甲酸盐氧化。相比之下,已发现产醋菌 Clostridium carboxidivorans 的甲酸盐脱氢酶更倾向于催化 CO₂ 的还原。这与它在伍德-吕恩达尔途径中引入 CO₂ 作为碳源的自然作用是一致的。催化的方向源于酶对甲酸盐的低亲和力。因此,该酶是生物技术应用的理想候选物,旨在从 CO₂ 生产甲酸和衍生化学品。

相似文献

1
Formate production through biocatalysis.
Bioengineered. 2013 Sep-Oct;4(5):348-50. doi: 10.4161/bioe.25360. Epub 2013 Jun 21.
2
Clostridium carboxidivorans strain P7T recombinant formate dehydrogenase catalyzes reduction of CO(2) to formate.
Appl Environ Microbiol. 2013 Jan;79(2):741-4. doi: 10.1128/AEM.02886-12. Epub 2012 Nov 9.
3
Synthesis of Formate from CO Gas Catalyzed by an O-Tolerant NAD-Dependent Formate Dehydrogenase and Glucose Dehydrogenase.
Biochemistry. 2019 Apr 9;58(14):1861-1868. doi: 10.1021/acs.biochem.8b01301. Epub 2019 Mar 18.
4
Formate-Dependent Acetogenic Utilization of Glucose by the Fecal Acetogen .
Appl Environ Microbiol. 2020 Nov 10;86(23). doi: 10.1128/AEM.01870-20.
5
Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli.
Curr Biol. 2018 Jan 8;28(1):140-145.e2. doi: 10.1016/j.cub.2017.11.050. Epub 2017 Dec 28.
6
Newly explored formate dehydrogenases from Clostridium species catalyze carbon dioxide to formate.
Bioresour Technol. 2022 Mar;348:126832. doi: 10.1016/j.biortech.2022.126832. Epub 2022 Feb 8.
7
Discovery of a new metal and NAD-dependent formate dehydrogenase from Clostridium ljungdahlii.
Prep Biochem Biotechnol. 2018 Apr 21;48(4):327-334. doi: 10.1080/10826068.2018.1446150. Epub 2018 Mar 30.
8
Formate production through carbon dioxide hydrogenation with recombinant whole cell biocatalysts.
Bioresour Technol. 2014 Jul;164:7-11. doi: 10.1016/j.biortech.2014.04.064. Epub 2014 Apr 28.
10
Reductive activation of CO by formate dehydrogenases.
Methods Enzymol. 2018;613:277-295. doi: 10.1016/bs.mie.2018.10.013. Epub 2018 Nov 23.

引用本文的文献

1
Characterization of the oxygen-tolerant formate dehydrogenase from .
Front Microbiol. 2025 Jan 13;15:1527626. doi: 10.3389/fmicb.2024.1527626. eCollection 2024.
2
Enzymes for Efficient CO Conversion.
Protein J. 2021 Aug;40(4):489-503. doi: 10.1007/s10930-021-10007-8. Epub 2021 Jun 7.
3
Effect of confinement of horse heart cytochrome c and formate dehydrogenase from Candida boidinii on mesoporous carbons on their catalytic activity.
Bioprocess Biosyst Eng. 2021 Aug;44(8):1699-1710. doi: 10.1007/s00449-021-02553-3. Epub 2021 Apr 3.
4
Reaction mechanism of formate dehydrogenase studied by computational methods.
J Biol Inorg Chem. 2018 Dec;23(8):1243-1254. doi: 10.1007/s00775-018-1608-y. Epub 2018 Sep 1.
6
Metabolic engineering of carbon and redox flow in the production of small organic acids.
J Ind Microbiol Biotechnol. 2015 Mar;42(3):403-22. doi: 10.1007/s10295-014-1560-y. Epub 2014 Dec 13.

本文引用的文献

1
Clostridium carboxidivorans strain P7T recombinant formate dehydrogenase catalyzes reduction of CO(2) to formate.
Appl Environ Microbiol. 2013 Jan;79(2):741-4. doi: 10.1128/AEM.02886-12. Epub 2012 Nov 9.
2
Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications.
Curr Opin Biotechnol. 2012 Jun;23(3):364-81. doi: 10.1016/j.copbio.2011.10.008. Epub 2011 Nov 11.
3
Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst.
Nat Nanotechnol. 2011 May;6(5):302-7. doi: 10.1038/nnano.2011.42. Epub 2011 Apr 10.
5
Genome sequence of the solvent-producing bacterium Clostridium carboxidivorans strain P7T.
J Bacteriol. 2010 Oct;192(20):5554-5. doi: 10.1128/JB.00877-10. Epub 2010 Aug 20.
6
Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation.
Biochim Biophys Acta. 2008 Dec;1784(12):1873-98. doi: 10.1016/j.bbapap.2008.08.012. Epub 2008 Aug 27.
7
Reversible interconversion of carbon dioxide and formate by an electroactive enzyme.
Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10654-8. doi: 10.1073/pnas.0801290105. Epub 2008 Jul 30.
10
Total synthesis of acetate from CO2 by heterotrophic bacteria.
Annu Rev Microbiol. 1969;23:515-38. doi: 10.1146/annurev.mi.23.100169.002503.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验