文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

癌症体细胞单核苷酸变异检测算法的比较分析。

A comparative analysis of algorithms for somatic SNV detection in cancer.

机构信息

School of Molecular and Biomedical Science and School of Mathematical Sciences, University of Adelaide, South Australia, Australia.

出版信息

Bioinformatics. 2013 Sep 15;29(18):2223-30. doi: 10.1093/bioinformatics/btt375. Epub 2013 Jul 9.


DOI:10.1093/bioinformatics/btt375
PMID:23842810
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3753564/
Abstract

MOTIVATION: With the advent of relatively affordable high-throughput technologies, DNA sequencing of cancers is now common practice in cancer research projects and will be increasingly used in clinical practice to inform diagnosis and treatment. Somatic (cancer-only) single nucleotide variants (SNVs) are the simplest class of mutation, yet their identification in DNA sequencing data is confounded by germline polymorphisms, tumour heterogeneity and sequencing and analysis errors. Four recently published algorithms for the detection of somatic SNV sites in matched cancer-normal sequencing datasets are VarScan, SomaticSniper, JointSNVMix and Strelka. In this analysis, we apply these four SNV calling algorithms to cancer-normal Illumina exome sequencing of a chronic myeloid leukaemia (CML) patient. The candidate SNV sites returned by each algorithm are filtered to remove likely false positives, then characterized and compared to investigate the strengths and weaknesses of each SNV calling algorithm. RESULTS: Comparing the candidate SNV sets returned by VarScan, SomaticSniper, JointSNVMix2 and Strelka revealed substantial differences with respect to the number and character of sites returned; the somatic probability scores assigned to the same sites; their susceptibility to various sources of noise; and their sensitivities to low-allelic-fraction candidates. AVAILABILITY: Data accession number SRA081939, code at http://code.google.com/p/snv-caller-review/ CONTACT: david.adelson@adelaide.edu.au SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:随着相对负担得起的高通量技术的出现,癌症的 DNA 测序现在是癌症研究项目中的常见做法,并且将越来越多地用于临床实践,以告知诊断和治疗。体细胞(仅癌症)单核苷酸变体(SNV)是最简单的突变类别,但它们在 DNA 测序数据中的识别受到种系多态性、肿瘤异质性以及测序和分析错误的混淆。最近发表的四个用于检测匹配的癌症-正常测序数据集中体细胞 SNV 位点的算法是 VarScan、SomaticSniper、JointSNVMix 和 Strelka。在这项分析中,我们将这四个 SNV 调用算法应用于慢性髓性白血病(CML)患者的癌症-正常 Illumina 外显子测序。通过每个算法返回的候选 SNV 位点被过滤以去除可能的假阳性,然后对其进行特征描述和比较,以研究每个 SNV 调用算法的优缺点。 结果:比较 VarScan、SomaticSniper、JointSNVMix2 和 Strelka 返回的候选 SNV 集,在返回的位点数量和特征、分配给相同位点的体细胞概率得分、对各种噪声源的敏感性以及对低等位基因分数候选物的敏感性方面存在显著差异。 可用性:数据访问号 SRA081939,代码位于 http://code.google.com/p/snv-caller-review/ 联系人:david.adelson@adelaide.edu.au 补充信息:补充数据可在 Bioinformatics 在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f84/3753564/45a4b05fdd2e/btt375f6p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f84/3753564/b3f0593bb223/btt375f1p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f84/3753564/3968ab934128/btt375f2p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f84/3753564/0d80cbe10bae/btt375f3p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f84/3753564/0f25bb0ab830/btt375f4p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f84/3753564/589c819352de/btt375f5p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f84/3753564/45a4b05fdd2e/btt375f6p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f84/3753564/b3f0593bb223/btt375f1p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f84/3753564/3968ab934128/btt375f2p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f84/3753564/0d80cbe10bae/btt375f3p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f84/3753564/0f25bb0ab830/btt375f4p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f84/3753564/589c819352de/btt375f5p.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f84/3753564/45a4b05fdd2e/btt375f6p.jpg

相似文献

[1]
A comparative analysis of algorithms for somatic SNV detection in cancer.

Bioinformatics. 2013-7-9

[2]
Comparison of somatic mutation calling methods in amplicon and whole exome sequence data.

BMC Genomics. 2014-3-28

[3]
SECEDO: SNV-based subclone detection using ultra-low coverage single-cell DNA sequencing.

Bioinformatics. 2022-9-15

[4]
Detailed simulation of cancer exome sequencing data reveals differences and common limitations of variant callers.

BMC Bioinformatics. 2017-1-3

[5]
SNVSniffer: an integrated caller for germline and somatic single-nucleotide and indel mutations.

BMC Syst Biol. 2016-8-1

[6]
FaSD-somatic: a fast and accurate somatic SNV detection algorithm for cancer genome sequencing data.

Bioinformatics. 2014-9-1

[7]
VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing.

Genome Res. 2012-2-2

[8]
Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers.

Genome Med. 2013-10-11

[9]
Accuracy and reproducibility of somatic point mutation calling in clinical-type targeted sequencing data.

BMC Med Genomics. 2020-10-15

[10]
JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data.

Bioinformatics. 2012-1-27

引用本文的文献

[1]
A Novel Affordable and Reliable Framework for Accurate Detection and Comprehensive Analysis of Somatic Mutations in Cancer.

Int J Mol Sci. 2024-7-24

[2]
mRNA vaccine development and applications: A special focus on tumors (Review).

Int J Oncol. 2024-8

[3]
CLEMENT: genomic decomposition and reconstruction of non-tumor subclones.

Nucleic Acids Res. 2024-8-12

[4]
Overexpression of SYNGAP1 suppresses the proliferation of rectal adenocarcinoma via Wnt/β-Catenin signaling pathway.

Discov Oncol. 2024-4-29

[5]
Quantification of rare somatic single nucleotide variants by droplet digital PCR using SuperSelective primers.

Sci Rep. 2023-11-3

[6]
Pain-Related Gene Solute Carrier Family 24 Member 3 Is a Prognostic Biomarker and Correlated with Immune Infiltrates in Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma: A Study via Integrated Bioinformatics Analyses and Experimental Verification.

Comput Math Methods Med. 2023

[7]
LPS-Induced Liver Injury of Magang Geese through Toll-like Receptor and MAPK Signaling Pathway.

Animals (Basel). 2022-12-28

[8]
Direct comparison of the next-generation sequencing and iTERT PCR methods for the diagnosis of TERT hotspot mutations in advanced solid cancers.

BMC Med Genomics. 2022-2-9

[9]
Branching clonal evolution patterns predominate mutational landscape in multiple myeloma.

Am J Cancer Res. 2021-11-15

[10]
Structural and functional analysis of somatic coding and UTR indels in breast and lung cancer genomes.

Sci Rep. 2021-10-27

本文引用的文献

[1]
Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples.

Nat Biotechnol. 2013-2-10

[2]
Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs.

Bioinformatics. 2012-5-10

[3]
VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing.

Genome Res. 2012-2-2

[4]
JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data.

Bioinformatics. 2012-1-27

[5]
Tumour heterogeneity and drug resistance: personalising cancer medicine through functional genomics.

Biochem Pharmacol. 2011-12-16

[6]
SomaticSniper: identification of somatic point mutations in whole genome sequencing data.

Bioinformatics. 2011-12-6

[7]
Identification and correction of systematic error in high-throughput sequence data.

BMC Bioinformatics. 2011-11-21

[8]
Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants.

Mutat Res. 2011-10-12

[9]
Human cancers express mutator phenotypes: origin, consequences and targeting.

Nat Rev Cancer. 2011-5-19

[10]
Sequence-specific error profile of Illumina sequencers.

Nucleic Acids Res. 2011-5-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索