Suppr超能文献

高通量测序的直接突变分析:从种系到低丰度、体细胞变异。

Direct mutation analysis by high-throughput sequencing: from germline to low-abundant, somatic variants.

机构信息

Albert Einstein College of Medicine, Department of Genetics, New York, NY 10461, United States.

出版信息

Mutat Res. 2012 Jan 3;729(1-2):1-15. doi: 10.1016/j.mrfmmm.2011.10.001. Epub 2011 Oct 12.

Abstract

DNA mutations are the source of genetic variation within populations. The majority of mutations with observable effects are deleterious. In humans mutations in the germ line can cause genetic disease. In somatic cells multiple rounds of mutations and selection lead to cancer. The study of genetic variation has progressed rapidly since the completion of the draft sequence of the human genome. Recent advances in sequencing technology, most importantly the introduction of massively parallel sequencing (MPS), have resulted in more than a hundred-fold reduction in the time and cost required for sequencing nucleic acids. These improvements have greatly expanded the use of sequencing as a practical tool for mutation analysis. While in the past the high cost of sequencing limited mutation analysis to selectable markers or small forward mutation targets assumed to be representative for the genome overall, current platforms allow whole genome sequencing for less than $5000. This has already given rise to direct estimates of germline mutation rates in multiple organisms including humans by comparing whole genome sequences between parents and offspring. Here we present a brief history of the field of mutation research, with a focus on classical tools for the measurement of mutation rates. We then review MPS, how it is currently applied and the new insight into human and animal mutation frequencies and spectra that has been obtained from whole genome sequencing. While great progress has been made, we note that the single most important limitation of current MPS approaches for mutation analysis is the inability to address low-abundance mutations that turn somatic tissues into mosaics of cells. Such mutations are at the basis of intra-tumor heterogeneity, with important implications for clinical diagnosis, and could also contribute to somatic diseases other than cancer, including aging. Some possible approaches to gain access to low-abundance mutations are discussed, with a brief overview of new sequencing platforms that are currently waiting in the wings to advance this exploding field even further.

摘要

DNA 突变是种群内遗传变异的来源。大多数具有可观察效应的突变都是有害的。在人类中,生殖细胞中的突变会导致遗传疾病。在体细胞中,多次突变和选择导致癌症。自人类基因组草图完成以来,遗传变异的研究进展迅速。测序技术的最新进展,尤其是大规模并行测序(MPS)的引入,使得核酸测序的时间和成本减少了 100 多倍。这些改进极大地扩展了测序作为突变分析实用工具的用途。虽然过去测序的高成本将突变分析限制在可选择的标记或假设代表整个基因组的小正向突变靶标上,但目前的平台允许对整个基因组进行测序,费用不到 5000 美元。这已经通过比较父母和后代之间的全基因组序列,直接估计了包括人类在内的多个生物体的生殖系突变率。在这里,我们简要介绍了突变研究领域的历史,重点介绍了用于测量突变率的经典工具。然后我们回顾了 MPS,它的当前应用以及通过全基因组测序获得的对人类和动物突变频率和谱的新认识。虽然已经取得了巨大的进展,但我们注意到,当前 MPS 方法在突变分析中最关键的限制是无法解决使体细胞成为细胞马赛克的低丰度突变。这些突变是肿瘤内异质性的基础,对临床诊断具有重要意义,也可能导致除癌症以外的其他体细胞疾病,包括衰老。讨论了一些获得低丰度突变的可能方法,并简要概述了目前正在等待进一步推进这一快速发展领域的新测序平台。

相似文献

2
Somatic mutations, genome mosaicism, cancer and aging.体细胞突变、基因组镶嵌现象、癌症与衰老。
Curr Opin Genet Dev. 2014 Jun;26:141-9. doi: 10.1016/j.gde.2014.04.002. Epub 2014 Oct 2.
4
7
Pan-cancer analysis of whole genomes.泛癌症全基因组分析。
Nature. 2020 Feb;578(7793):82-93. doi: 10.1038/s41586-020-1969-6. Epub 2020 Feb 5.
8
The Rise and Rise of Exome Sequencing.外显子组测序的崛起与持续发展
Public Health Genomics. 2016;19(6):315-324. doi: 10.1159/000450991. Epub 2016 Nov 30.

引用本文的文献

6
Methods to improve the accuracy of next-generation sequencing.提高下一代测序准确性的方法。
Front Bioeng Biotechnol. 2023 Jan 20;11:982111. doi: 10.3389/fbioe.2023.982111. eCollection 2023.

本文引用的文献

3
Detection and quantification of rare mutations with massively parallel sequencing.大规模平行测序检测和定量稀有突变。
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9530-5. doi: 10.1073/pnas.1105422108. Epub 2011 May 17.
4
Sequence-specific error profile of Illumina sequencers.Illumina 测序仪的序列特异性错误特征。
Nucleic Acids Res. 2011 Jul;39(13):e90. doi: 10.1093/nar/gkr344. Epub 2011 May 16.
6
Single-cell genomics.单细胞基因组学。
Nat Methods. 2011 Apr;8(4):311-4. doi: 10.1038/nmeth0411-311.
7
Tumour evolution inferred by single-cell sequencing.单细胞测序推断肿瘤进化。
Nature. 2011 Apr 7;472(7341):90-4. doi: 10.1038/nature09807. Epub 2011 Mar 13.
8
Exome sequencing deciphers rare diseases.外显子组测序解析罕见病。
Cell. 2011 Mar 4;144(5):635-7. doi: 10.1016/j.cell.2011.02.033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验