Suppr超能文献

具有不断增加类别的随机块模型。

Stochastic blockmodels with a growing number of classes.

作者信息

Choi D S, Wolfe P J, Airoldi E M

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, U.S.A. ,

出版信息

Biometrika. 2012 Jun;99(2):273-284. doi: 10.1093/biomet/asr053. Epub 2012 Apr 17.

Abstract

We present asymptotic and finite-sample results on the use of stochastic blockmodels for the analysis of network data. We show that the fraction of misclassified network nodes converges in probability to zero under maximum likelihood fitting when the number of classes is allowed to grow as the root of the network size and the average network degree grows at least poly-logarithmically in this size. We also establish finite-sample confidence bounds on maximum-likelihood blockmodel parameter estimates from data comprising independent Bernoulli random variates; these results hold uniformly over class assignment. We provide simulations verifying the conditions sufficient for our results, and conclude by fitting a logit parameterization of a stochastic blockmodel with covariates to a network data example comprising self-reported school friendships, resulting in block estimates that reveal residual structure.

摘要

我们给出了关于使用随机块模型分析网络数据的渐近和有限样本结果。我们表明,在最大似然拟合下,当类别数量随着网络规模的平方根增长且平均网络度至少以网络规模的多对数形式增长时,误分类网络节点的比例依概率收敛到零。我们还为包含独立伯努利随机变量的数据建立了最大似然块模型参数估计的有限样本置信界;这些结果在类别分配上是一致成立的。我们提供了模拟,验证了足以得出我们结果的条件,并通过将具有协变量的随机块模型的逻辑参数化拟合到一个包含自我报告的学校友谊的网络数据示例来得出结论,得到的块估计揭示了残余结构。

相似文献

1
Stochastic blockmodels with a growing number of classes.
Biometrika. 2012 Jun;99(2):273-284. doi: 10.1093/biomet/asr053. Epub 2012 Apr 17.
2
Multi-subject Stochastic Blockmodels for adaptive analysis of individual differences in human brain network cluster structure.
Neuroimage. 2020 Oct 15;220:116611. doi: 10.1016/j.neuroimage.2020.116611. Epub 2020 Feb 10.
4
A Theoretical Analysis of DeepWalk and Node2vec for Exact Recovery of Community Structures in Stochastic Blockmodels.
IEEE Trans Pattern Anal Mach Intell. 2024 Feb;46(2):1065-1078. doi: 10.1109/TPAMI.2023.3327631. Epub 2024 Jan 10.
5
Network histograms and universality of blockmodel approximation.
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14722-7. doi: 10.1073/pnas.1400374111. Epub 2014 Oct 1.
6
Entropy of stochastic blockmodel ensembles.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056122. doi: 10.1103/PhysRevE.85.056122. Epub 2012 May 30.
7
An empirical Bayes approach to stochastic blockmodels and graphons: shrinkage estimation and model selection.
PeerJ Comput Sci. 2022 Jul 6;8:e1006. doi: 10.7717/peerj-cs.1006. eCollection 2022.
8
Symmetric core-cohesive blockmodel in preschool children's interaction networks.
PLoS One. 2020 Jan 15;15(1):e0226801. doi: 10.1371/journal.pone.0226801. eCollection 2020.
9
Mixed Membership Stochastic Blockmodels.
J Mach Learn Res. 2008 Sep;9:1981-2014.

引用本文的文献

1
A Joint MLE Approach to Large-Scale Structured Latent Attribute Analysis.
J Am Stat Assoc. 2023;118(541):746-760. doi: 10.1080/01621459.2021.1955689. Epub 2021 Sep 1.
2
A Useful Criterion on Studying Consistent Estimation in Community Detection.
Entropy (Basel). 2022 Aug 9;24(8):1098. doi: 10.3390/e24081098.
3
Weighted stochastic block model.
Stat Methods Appt. 2021;30(5):1365-1398. doi: 10.1007/s10260-021-00590-6. Epub 2021 Sep 13.
4
Penalized homophily latent space models for directed scale-free networks.
PLoS One. 2021 Aug 2;16(8):e0253873. doi: 10.1371/journal.pone.0253873. eCollection 2021.
5
Social Network Mediation Analysis: A Latent Space Approach.
Psychometrika. 2021 Mar;86(1):272-298. doi: 10.1007/s11336-020-09736-z. Epub 2020 Dec 21.
6
Model-based clustering of time-evolving networks through temporal exponential-family random graph models.
J Multivar Anal. 2020 Jan;175. doi: 10.1016/j.jmva.2019.104540. Epub 2019 Sep 5.
7
Large-scale estimation of random graph models with local dependence.
Comput Stat Data Anal. 2020 Dec;152:107029. doi: 10.1016/j.csda.2020.107029. Epub 2020 Jun 9.
8
Multi-scale network regression for brain-phenotype associations.
Hum Brain Mapp. 2020 Jul;41(10):2553-2566. doi: 10.1002/hbm.24982. Epub 2020 Mar 26.
10
Multiresolution Network Models.
J Comput Graph Stat. 2019;28(1):185-196. doi: 10.1080/10618600.2018.1505633. Epub 2018 Nov 5.

本文引用的文献

1
Mixed Membership Stochastic Blockmodels.
J Mach Learn Res. 2008 Sep;9:1981-2014.
2
Stochastic blockmodels and community structure in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107. doi: 10.1103/PhysRevE.83.016107. Epub 2011 Jan 21.
3
A nonparametric view of network models and Newman-Girvan and other modularities.
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21068-73. doi: 10.1073/pnas.0907096106. Epub 2009 Nov 23.
5
Community structure in social and biological networks.
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6. doi: 10.1073/pnas.122653799.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验