Suppr超能文献

多主题随机块模型在人类脑网络聚类结构个体差异自适应分析中的应用。

Multi-subject Stochastic Blockmodels for adaptive analysis of individual differences in human brain network cluster structure.

机构信息

Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Department of Electrical and Computer Engineering, Clinical Imaging Research Centre, N.1 Institute for Health and Memory Networks Programme, National University of Singapore, Singapore.

Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Department of Biomedical Engineering, National University of Singapore, Singapore.

出版信息

Neuroimage. 2020 Oct 15;220:116611. doi: 10.1016/j.neuroimage.2020.116611. Epub 2020 Feb 10.

Abstract

There is considerable interest in elucidating the cluster structure of brain networks in terms of modules, blocks or clusters of similar nodes. However, it is currently challenging to handle data on multiple subjects since most of the existing methods are applicable only on a subject-by-subject basis or for analysis of an average group network. The main limitation of per-subject models is that there is no obvious way to combine the results for group comparisons, and of group-averaged models that they do not reflect the variability between subjects. Here, we propose two new extensions of the classical Stochastic Blockmodel (SBM) that use a mixture model to estimate blocks or clusters of connected nodes, combined with a regression model to capture the effects of subject-level covariates on individual differences in cluster structure. The proposed Multi-Subject Stochastic Blockmodels (MS-SBMs) can flexibly account for between-subject variability in terms of homogeneous or heterogeneous covariate effects on connectivity using subject demographics such as age or diagnostic status. Using synthetic data, representing a range of block sizes and cluster structures, we investigate the accuracy of the estimated MS-SBM parameters as well as the validity of inference procedures based on the Wald, likelihood ratio and permutation tests. We show that the proposed multi-subject SBMs recover the true cluster structure of synthetic networks more accurately and adaptively than standard methods for modular decomposition (i.e. the Fast Louvain and Newman Spectral algorithms). Permutation tests of MS-SBM parameters were more robustly valid for statistical inference and Type I error control than tests based on standard asymptotic assumptions. Applied to analysis of multi-subject resting-state fMRI networks (13 healthy volunteers; 12 people with schizophrenia; n=268 brain regions), we show that Heterogeneous Stochastic Blockmodel (Het-SBM) identifies a range of network topologies simultaneously, including modular and core structures.

摘要

人们对于揭示脑网络的模块、块或相似节点聚类结构很感兴趣。然而,目前处理多主体数据具有挑战性,因为大多数现有的方法仅适用于逐个主体的基础上,或者适用于分析平均组网络。基于个体的模型的主要局限性在于没有明显的方法将结果组合用于组间比较,而基于组平均的模型则不能反映个体之间的变异性。在这里,我们提出了经典随机块模型(SBM)的两个新扩展,该模型使用混合模型来估计连接节点的块或聚类,结合回归模型来捕获主体水平协变量对聚类结构个体差异的影响。所提出的多主体随机块模型(MS-SBM)可以灵活地根据主体人口统计学(如年龄或诊断状态)来解释连接的同质或异质协变量效应,从而解释主体间的变异性。使用代表一系列块大小和聚类结构的合成数据,我们研究了估计的 MS-SBM 参数的准确性,以及基于 Wald、似然比和置换检验的推断程序的有效性。我们表明,所提出的多主体 SBM 比用于模块化分解的标准方法(即快速 Louvain 和 Newman 谱算法)更准确和自适应地恢复合成网络的真实聚类结构。MS-SBM 参数的置换检验比基于标准渐近假设的检验更稳健地有效,用于统计推断和 I 型错误控制。将其应用于多主体静息态 fMRI 网络(13 名健康志愿者;12 名精神分裂症患者;n=268 个脑区)的分析,我们表明,异质随机块模型(Het-SBM)同时识别了一系列网络拓扑结构,包括模块化和核心结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验