Qing Huan
School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China.
Entropy (Basel). 2022 Aug 9;24(8):1098. doi: 10.3390/e24081098.
In network analysis, developing a unified theoretical framework that can compare methods under different models is an interesting problem. This paper proposes a partial solution to this problem. We summarize the idea of using a separation condition for a standard network and sharp threshold of the Erdös-Rényi random graph to study consistent estimation, and compare theoretical error rates and requirements on the network sparsity of spectral methods under models that can degenerate to a stochastic block model as a four-step criterion SCSTC. Using SCSTC, we find some inconsistent phenomena on separation condition and sharp threshold in community detection. In particular, we find that the original theoretical results of the SPACL algorithm introduced to estimate network memberships under the mixed membership stochastic blockmodel are sub-optimal. To find the formation mechanism of inconsistencies, we re-establish the theoretical convergence rate of this algorithm by applying recent techniques on row-wise eigenvector deviation. The results are further extended to the degree-corrected mixed membership model. By comparison, our results enjoy smaller error rates, lesser dependence on the number of communities, weaker requirements on network sparsity, and so forth. The separation condition and sharp threshold obtained from our theoretical results match the classical results, so the usefulness of this criterion on studying consistent estimation is guaranteed. Numerical results for computer-generated networks support our finding that spectral methods considered in this paper achieve the threshold of separation condition.
在网络分析中,构建一个能够比较不同模型下方法的统一理论框架是一个有趣的问题。本文针对这一问题提出了一个部分解决方案。我们总结了利用标准网络的分离条件和厄多斯 - 雷尼随机图的尖锐阈值来研究一致估计的思想,并在可退化为随机块模型的模型下,将谱方法的理论错误率和对网络稀疏性的要求作为一个四步准则SCSTC进行比较。利用SCSTC,我们在社区检测中的分离条件和尖锐阈值上发现了一些不一致现象。特别是,我们发现引入用于在混合成员随机块模型下估计网络成员的SPACL算法的原始理论结果是次优的。为了找出不一致的形成机制,我们通过应用最近关于行特征向量偏差的技术重新建立了该算法的理论收敛速度。结果进一步扩展到度校正混合成员模型。通过比较,我们的结果具有更小的错误率、对社区数量的依赖性更小、对网络稀疏性的要求更弱等优点。从我们的理论结果中得到的分离条件和尖锐阈值与经典结果相匹配,因此保证了该准则在研究一致估计方面的有用性。计算机生成网络的数值结果支持了我们的发现,即本文中考虑的谱方法达到了分离条件的阈值。