Department of Psychiatry, Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, California, United States of America.
PLoS One. 2013 Jul 3;8(7):e68360. doi: 10.1371/journal.pone.0068360. Print 2013.
Recently, many lines of investigation in neuroscience and statistical physics have converged to raise the hypothesis that the underlying pattern of neuronal activation which results in electroencephalography (EEG) signals is nonlinear, with self-affine dynamics, while scalp-recorded EEG signals themselves are nonstationary. Therefore, traditional methods of EEG analysis may miss many properties inherent in such signals. Similarly, fractal analysis of EEG signals has shown scaling behaviors that may not be consistent with pure monofractal processes. In this study, we hypothesized that scalp-recorded human EEG signals may be better modeled as an underlying multifractal process. We utilized the Physionet online database, a publicly available database of human EEG signals as a standardized reference database for this study. Herein, we report the use of multifractal detrended fluctuation analysis on human EEG signals derived from waking and different sleep stages, and show evidence that supports the use of multifractal methods. Next, we compare multifractal detrended fluctuation analysis to a previously published multifractal technique, wavelet transform modulus maxima, using EEG signals from waking and sleep, and demonstrate that multifractal detrended fluctuation analysis has lower indices of variability. Finally, we report a preliminary investigation into the use of multifractal detrended fluctuation analysis as a pattern classification technique on human EEG signals from waking and different sleep stages, and demonstrate its potential utility for automatic classification of different states of consciousness. Therefore, multifractal detrended fluctuation analysis may be a useful pattern classification technique to distinguish among different states of brain function.
最近,神经科学和统计物理学的许多研究方向都得出了一个假设,即导致脑电图(EEG)信号的神经元激活的潜在模式是非线性的,具有自相似动力学,而头皮记录的 EEG 信号本身是非平稳的。因此,传统的 EEG 分析方法可能会错过这些信号所固有的许多特性。同样,EEG 信号的分形分析也显示出了可能与纯单分形过程不一致的标度行为。在这项研究中,我们假设头皮记录的人类 EEG 信号可以更好地建模为潜在的多重分形过程。我们利用 Physionet 在线数据库,这是一个公开的人类 EEG 信号数据库,作为本研究的标准化参考数据库。在此,我们报告了在清醒和不同睡眠阶段的人类 EEG 信号上使用多重分形去趋势波动分析的情况,并提供了支持使用多重分形方法的证据。接下来,我们将多重分形去趋势波动分析与之前发表的多重分形技术——小波变换模极大值进行比较,使用清醒和睡眠时的 EEG 信号进行比较,并证明多重分形去趋势波动分析具有更低的可变性指数。最后,我们报告了一项初步研究,即在清醒和不同睡眠阶段的人类 EEG 信号上使用多重分形去趋势波动分析作为模式分类技术,并证明其在自动分类不同意识状态方面的潜在用途。因此,多重分形去趋势波动分析可能是一种有用的模式分类技术,可以区分不同的大脑功能状态。