Suppr超能文献

多重分形去趋势波动分析在人类脑电图中的应用:初步研究及与小波变换模极大值技术的比较。

Multifractal detrended fluctuation analysis of human EEG: preliminary investigation and comparison with the wavelet transform modulus maxima technique.

机构信息

Department of Psychiatry, Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, California, United States of America.

出版信息

PLoS One. 2013 Jul 3;8(7):e68360. doi: 10.1371/journal.pone.0068360. Print 2013.

Abstract

Recently, many lines of investigation in neuroscience and statistical physics have converged to raise the hypothesis that the underlying pattern of neuronal activation which results in electroencephalography (EEG) signals is nonlinear, with self-affine dynamics, while scalp-recorded EEG signals themselves are nonstationary. Therefore, traditional methods of EEG analysis may miss many properties inherent in such signals. Similarly, fractal analysis of EEG signals has shown scaling behaviors that may not be consistent with pure monofractal processes. In this study, we hypothesized that scalp-recorded human EEG signals may be better modeled as an underlying multifractal process. We utilized the Physionet online database, a publicly available database of human EEG signals as a standardized reference database for this study. Herein, we report the use of multifractal detrended fluctuation analysis on human EEG signals derived from waking and different sleep stages, and show evidence that supports the use of multifractal methods. Next, we compare multifractal detrended fluctuation analysis to a previously published multifractal technique, wavelet transform modulus maxima, using EEG signals from waking and sleep, and demonstrate that multifractal detrended fluctuation analysis has lower indices of variability. Finally, we report a preliminary investigation into the use of multifractal detrended fluctuation analysis as a pattern classification technique on human EEG signals from waking and different sleep stages, and demonstrate its potential utility for automatic classification of different states of consciousness. Therefore, multifractal detrended fluctuation analysis may be a useful pattern classification technique to distinguish among different states of brain function.

摘要

最近,神经科学和统计物理学的许多研究方向都得出了一个假设,即导致脑电图(EEG)信号的神经元激活的潜在模式是非线性的,具有自相似动力学,而头皮记录的 EEG 信号本身是非平稳的。因此,传统的 EEG 分析方法可能会错过这些信号所固有的许多特性。同样,EEG 信号的分形分析也显示出了可能与纯单分形过程不一致的标度行为。在这项研究中,我们假设头皮记录的人类 EEG 信号可以更好地建模为潜在的多重分形过程。我们利用 Physionet 在线数据库,这是一个公开的人类 EEG 信号数据库,作为本研究的标准化参考数据库。在此,我们报告了在清醒和不同睡眠阶段的人类 EEG 信号上使用多重分形去趋势波动分析的情况,并提供了支持使用多重分形方法的证据。接下来,我们将多重分形去趋势波动分析与之前发表的多重分形技术——小波变换模极大值进行比较,使用清醒和睡眠时的 EEG 信号进行比较,并证明多重分形去趋势波动分析具有更低的可变性指数。最后,我们报告了一项初步研究,即在清醒和不同睡眠阶段的人类 EEG 信号上使用多重分形去趋势波动分析作为模式分类技术,并证明其在自动分类不同意识状态方面的潜在用途。因此,多重分形去趋势波动分析可能是一种有用的模式分类技术,可以区分不同的大脑功能状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2edf/3700954/cfbb92c99850/pone.0068360.g001.jpg

相似文献

2
Generalized Information Equilibrium Approaches to EEG Sleep Stage Discrimination.
Comput Math Methods Med. 2016;2016:6450126. doi: 10.1155/2016/6450126. Epub 2016 Jul 19.
3
Wavelet versus detrended fluctuation analysis of multifractal structures.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 2):016103. doi: 10.1103/PhysRevE.74.016103. Epub 2006 Jul 6.
5
Auto-correlation in the motor/imaginary human EEG signals: A vision about the FDFA fluctuations.
PLoS One. 2017 Sep 14;12(9):e0183121. doi: 10.1371/journal.pone.0183121. eCollection 2017.
6
Automatic detection of sleep apnea based on EEG detrended fluctuation analysis and support vector machine.
J Clin Monit Comput. 2015 Dec;29(6):767-72. doi: 10.1007/s10877-015-9664-0. Epub 2015 Feb 8.
7
Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation.
Physiol Meas. 2015 Nov;36(11):2269-84. doi: 10.1088/0967-3334/36/11/2269. Epub 2015 Oct 9.
8
Nonlinear-analysis of human sleep EEG using detrended fluctuation analysis.
Med Eng Phys. 2004 Nov;26(9):773-6. doi: 10.1016/j.medengphy.2004.07.002.

引用本文的文献

1
Multiple serial correlations in global air temperature anomaly time series.
PLoS One. 2024 Jul 9;19(7):e0306694. doi: 10.1371/journal.pone.0306694. eCollection 2024.
2
Consciousness and complexity: a consilience of evidence.
Neurosci Conscious. 2021 Aug 30;2021(2):niab023. doi: 10.1093/nc/niab023. eCollection 2021.
3
EEG Complexity Analysis of Brain States, Tasks and ASD Risk.
Adv Neurobiol. 2024;36:733-759. doi: 10.1007/978-3-031-47606-8_37.
4
Advances in Understanding Fractals in Affective and Anxiety Disorders.
Adv Neurobiol. 2024;36:717-732. doi: 10.1007/978-3-031-47606-8_36.
5
6
Multifractal Analysis in Neuroimaging.
Adv Neurobiol. 2024;36:79-93. doi: 10.1007/978-3-031-47606-8_4.
7
Fingerprints of decreased cognitive performance on fractal connectivity dynamics in healthy aging.
Geroscience. 2024 Feb;46(1):713-736. doi: 10.1007/s11357-023-01022-x. Epub 2023 Dec 20.
8
Neuronal connected burst cascades bridge macroscale adaptive signatures across arousal states.
Nat Commun. 2023 Oct 27;14(1):6846. doi: 10.1038/s41467-023-42465-2.
10
Study on the Effect of Judgment Excitation Mode to Relieve Driving Fatigue Based on MF-DFA.
Brain Sci. 2022 Sep 6;12(9):1199. doi: 10.3390/brainsci12091199.

本文引用的文献

1
Self-Regulated Dynamical Criticality in Human ECoG.
Front Integr Neurosci. 2012 Jul 19;6:44. doi: 10.3389/fnint.2012.00044. eCollection 2012.
4
Complexity measures of brain wave dynamics.
Cogn Neurodyn. 2011 Jun;5(2):171-82. doi: 10.1007/s11571-011-9151-3. Epub 2011 Feb 9.
5
The functional benefits of criticality in the cortex.
Neuroscientist. 2013 Feb;19(1):88-100. doi: 10.1177/1073858412445487. Epub 2012 May 24.
6
Statistical analyses support power law distributions found in neuronal avalanches.
PLoS One. 2011;6(5):e19779. doi: 10.1371/journal.pone.0019779. Epub 2011 May 26.
7
Clinical electrophysiologic assessments and mild traumatic brain injury: state-of-the-science and implications for clinical practice.
Int J Psychophysiol. 2011 Oct;82(1):41-52. doi: 10.1016/j.ijpsycho.2011.03.004. Epub 2011 Mar 16.
8
Spontaneous cortical activity in awake monkeys composed of neuronal avalanches.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15921-6. doi: 10.1073/pnas.0904089106. Epub 2009 Aug 26.
9
Broadband criticality of human brain network synchronization.
PLoS Comput Biol. 2009 Mar;5(3):e1000314. doi: 10.1371/journal.pcbi.1000314. Epub 2009 Mar 20.
10
Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3.
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7576-81. doi: 10.1073/pnas.0800537105. Epub 2008 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验