Suppr超能文献

脑波动力学的复杂性测度。

Complexity measures of brain wave dynamics.

出版信息

Cogn Neurodyn. 2011 Jun;5(2):171-82. doi: 10.1007/s11571-011-9151-3. Epub 2011 Feb 9.

Abstract

To understand the nature of brain dynamics as well as to develop novel methods for the diagnosis of brain pathologies, recently, a number of complexity measures from information theory, chaos theory, and random fractal theory have been applied to analyze the EEG data. These measures are crucial in quantifying the key notions of neurodynamics, including determinism, stochasticity, causation, and correlations. Finding and understanding the relations among these complexity measures is thus an important issue. However, this is a difficult task, since the foundations of information theory, chaos theory, and random fractal theory are very different. To gain significant insights into this issue, we carry out a comprehensive comparison study of major complexity measures for EEG signals. We find that the variations of commonly used complexity measures with time are either similar or reciprocal. While many of these relations are difficult to explain intuitively, all of them can be readily understood by relating these measures to the values of a multiscale complexity measure, the scale-dependent Lyapunov exponent, at specific scales. We further discuss how better indicators for epileptic seizures can be constructed.

摘要

为了理解大脑动力学的本质,并开发出用于诊断脑病理学的新方法,最近,许多来自信息论、混沌理论和随机分形理论的复杂性度量被应用于分析 EEG 数据。这些度量对于量化神经动力学的关键概念,包括确定性、随机性、因果关系和相关性,至关重要。因此,寻找和理解这些复杂性度量之间的关系是一个重要的问题。然而,这是一项艰巨的任务,因为信息论、混沌理论和随机分形理论的基础非常不同。为了深入了解这个问题,我们对 EEG 信号的主要复杂性度量进行了全面的比较研究。我们发现,常用复杂性度量随时间的变化要么相似,要么相反。虽然许多这样的关系难以直观地解释,但通过将这些度量与多尺度复杂性度量的特定尺度上的标度相关的 Lyapunov 指数值联系起来,所有这些关系都可以很容易地理解。我们进一步讨论了如何构建更好的癫痫发作指标。

相似文献

1
Complexity measures of brain wave dynamics.脑波动力学的复杂性测度。
Cogn Neurodyn. 2011 Jun;5(2):171-82. doi: 10.1007/s11571-011-9151-3. Epub 2011 Feb 9.

引用本文的文献

1
Exploring the complexity of EEG patterns in Parkinson's disease.探索帕金森病脑电图模式的复杂性。
Geroscience. 2025 Feb;47(1):837-849. doi: 10.1007/s11357-024-01277-y. Epub 2024 Jul 13.
3
Brain Complexity and Psychiatric Disorders.大脑复杂性与精神疾病
Iran J Psychiatry. 2023 Oct;18(4):493-502. doi: 10.18502/ijps.v18i4.13637.
6
A Pilot Study on EEG-Based Evaluation of Visually Induced Motion Sickness.基于脑电图的视觉诱发晕动病评估的初步研究。
J Imaging Sci Technol. 2020 Mar 1;64(2):205011-2050110. doi: 10.2352/J.ImagingSci.Technol.2020.64.2.020501. Epub 2020 Jan 31.

本文引用的文献

4
Interpreting neurodynamics: concepts and facts.神经动力学解读:概念与事实。
Cogn Neurodyn. 2008 Dec;2(4):297-318. doi: 10.1007/s11571-008-9067-8. Epub 2008 Oct 15.
8
EEG source localization in focal epilepsy: where are we now?局灶性癫痫中的脑电图源定位:我们目前的进展如何?
Epilepsia. 2008 Feb;49(2):201-18. doi: 10.1111/j.1528-1167.2007.01381.x. Epub 2007 Oct 15.
9
Distinguishing chaos from noise by scale-dependent Lyapunov exponent.通过尺度相关的李雅普诺夫指数区分混沌与噪声。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 2):066204. doi: 10.1103/PhysRevE.74.066204. Epub 2006 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验