Zebende Gilney Figueira, Oliveira Filho Florêncio Mendes, Leyva Cruz Juan Alberto
Department of Physics, State University of Feira de Santana, Bahia, Brazil.
Gilberto Gil Campus, Estácio de Sá University, Bahia, Brazil.
PLoS One. 2017 Sep 14;12(9):e0183121. doi: 10.1371/journal.pone.0183121. eCollection 2017.
In this paper we analyzed, by the FDFA root mean square fluctuation (rms) function, the motor/imaginary human activity produced by a 64-channel electroencephalography (EEG). We utilized the Physionet on-line databank, a publicly available database of human EEG signals, as a standardized reference database for this study. Herein, we report the use of detrended fluctuation analysis (DFA) method for EEG analysis. We show that the complex time series of the EEG exhibits characteristic fluctuations depending on the analyzed channel in the scalp-recorded EEG. In order to demonstrate the effectiveness of the proposed technique, we analyzed four distinct channels represented here by F332, F637 (frontal region of the head) and P349, P654 (parietal region of the head). We verified that the amplitude of the FDFA rms function is greater for the frontal channels than for the parietal. To tabulate this information in a better way, we define and calculate the difference between FDFA (in log scale) for the channels, thus defining a new path for analysis of EEG signals. Finally, related to the studied EEG signals, we obtain the auto-correlation exponent, αDFA by DFA method, that reveals self-affinity at specific time scale. Our results shows that this strategy can be applied to study the human brain activity in EEG processing.
在本文中,我们通过有限差分波动分析(FDFA)均方根波动(rms)函数,分析了由64通道脑电图(EEG)产生的运动/想象人类活动。我们利用Physionet在线数据库(一个公开可用的人类EEG信号数据库)作为本研究的标准化参考数据库。在此,我们报告了去趋势波动分析(DFA)方法在EEG分析中的应用。我们表明,EEG的复杂时间序列根据头皮记录EEG中所分析的通道呈现出特征波动。为了证明所提出技术的有效性,我们分析了此处由F332、F637(头部额叶区域)和P349、P654(头部顶叶区域)代表的四个不同通道。我们验证了额叶通道的FDFA rms函数的幅度大于顶叶通道。为了更好地将此信息制成表格,我们定义并计算通道的FDFA(对数尺度)之间的差异,从而为EEG信号分析定义了一条新途径。最后,关于所研究的EEG信号,我们通过DFA方法获得自相关指数αDFA,它揭示了特定时间尺度上的自相似性。我们的结果表明,这种策略可应用于EEG处理中对人类大脑活动的研究。