Suppr超能文献

人体运动/想象脑电信号中的自相关:关于FDFA波动的一种见解。

Auto-correlation in the motor/imaginary human EEG signals: A vision about the FDFA fluctuations.

作者信息

Zebende Gilney Figueira, Oliveira Filho Florêncio Mendes, Leyva Cruz Juan Alberto

机构信息

Department of Physics, State University of Feira de Santana, Bahia, Brazil.

Gilberto Gil Campus, Estácio de Sá University, Bahia, Brazil.

出版信息

PLoS One. 2017 Sep 14;12(9):e0183121. doi: 10.1371/journal.pone.0183121. eCollection 2017.

Abstract

In this paper we analyzed, by the FDFA root mean square fluctuation (rms) function, the motor/imaginary human activity produced by a 64-channel electroencephalography (EEG). We utilized the Physionet on-line databank, a publicly available database of human EEG signals, as a standardized reference database for this study. Herein, we report the use of detrended fluctuation analysis (DFA) method for EEG analysis. We show that the complex time series of the EEG exhibits characteristic fluctuations depending on the analyzed channel in the scalp-recorded EEG. In order to demonstrate the effectiveness of the proposed technique, we analyzed four distinct channels represented here by F332, F637 (frontal region of the head) and P349, P654 (parietal region of the head). We verified that the amplitude of the FDFA rms function is greater for the frontal channels than for the parietal. To tabulate this information in a better way, we define and calculate the difference between FDFA (in log scale) for the channels, thus defining a new path for analysis of EEG signals. Finally, related to the studied EEG signals, we obtain the auto-correlation exponent, αDFA by DFA method, that reveals self-affinity at specific time scale. Our results shows that this strategy can be applied to study the human brain activity in EEG processing.

摘要

在本文中,我们通过有限差分波动分析(FDFA)均方根波动(rms)函数,分析了由64通道脑电图(EEG)产生的运动/想象人类活动。我们利用Physionet在线数据库(一个公开可用的人类EEG信号数据库)作为本研究的标准化参考数据库。在此,我们报告了去趋势波动分析(DFA)方法在EEG分析中的应用。我们表明,EEG的复杂时间序列根据头皮记录EEG中所分析的通道呈现出特征波动。为了证明所提出技术的有效性,我们分析了此处由F332、F637(头部额叶区域)和P349、P654(头部顶叶区域)代表的四个不同通道。我们验证了额叶通道的FDFA rms函数的幅度大于顶叶通道。为了更好地将此信息制成表格,我们定义并计算通道的FDFA(对数尺度)之间的差异,从而为EEG信号分析定义了一条新途径。最后,关于所研究的EEG信号,我们通过DFA方法获得自相关指数αDFA,它揭示了特定时间尺度上的自相似性。我们的结果表明,这种策略可应用于EEG处理中对人类大脑活动的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b52/5598924/8d0e9045593b/pone.0183121.g001.jpg

相似文献

1
Auto-correlation in the motor/imaginary human EEG signals: A vision about the FDFA fluctuations.
PLoS One. 2017 Sep 14;12(9):e0183121. doi: 10.1371/journal.pone.0183121. eCollection 2017.
2
4
Inference on Long-Range Temporal Correlations in Human EEG Data.
IEEE J Biomed Health Inform. 2020 Apr;24(4):1070-1079. doi: 10.1109/JBHI.2019.2936326. Epub 2019 Aug 29.
5
Detrended fluctuation analysis of resting EEG in depressed outpatients and healthy controls.
Clin Neurophysiol. 2007 Nov;118(11):2489-96. doi: 10.1016/j.clinph.2007.08.001. Epub 2007 Sep 24.
6
Investigating the interaction between heart rate variability and sleep EEG using nonlinear algorithms.
J Neurosci Methods. 2013 Oct 15;219(2):233-9. doi: 10.1016/j.jneumeth.2013.08.008. Epub 2013 Aug 18.
7
Comparative study between Sample Entropy and Detrended Fluctuation Analysis performance on EEG records under data loss.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4233-6. doi: 10.1109/EMBC.2012.6346901.
8
Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
Artif Intell Med. 2012 Jun;55(2):117-26. doi: 10.1016/j.artmed.2012.02.001. Epub 2012 Apr 12.
10
Isolating gait-related movement artifacts in electroencephalography during human walking.
J Neural Eng. 2015 Aug;12(4):046022. doi: 10.1088/1741-2560/12/4/046022. Epub 2015 Jun 17.

本文引用的文献

1
Detrended fluctuation analysis: a scale-free view on neuronal oscillations.
Front Physiol. 2012 Nov 30;3:450. doi: 10.3389/fphys.2012.00450. eCollection 2012.
2
Detrended fluctuation analysis of resting EEG in depressed outpatients and healthy controls.
Clin Neurophysiol. 2007 Nov;118(11):2489-96. doi: 10.1016/j.clinph.2007.08.001. Epub 2007 Sep 24.
3
Sequential memory: a developmental perspective on its relation to frontal lobe functioning.
Neuropsychol Rev. 2004 Mar;14(1):43-64. doi: 10.1023/b:nerv.0000026648.94811.32.
4
BCI2000: a general-purpose brain-computer interface (BCI) system.
IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43. doi: 10.1109/TBME.2004.827072.
5
Persistent activity in the prefrontal cortex during working memory.
Trends Cogn Sci. 2003 Sep;7(9):415-423. doi: 10.1016/s1364-6613(03)00197-9.
6
Effect of nonstationarities on detrended fluctuation analysis.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041107. doi: 10.1103/PhysRevE.65.041107. Epub 2002 Apr 8.
7
A method to standardize a reference of scalp EEG recordings to a point at infinity.
Physiol Meas. 2001 Nov;22(4):693-711. doi: 10.1088/0967-3334/22/4/305.
8
Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data.
Comput Biol Med. 2002 Jan;32(1):37-47. doi: 10.1016/s0010-4825(01)00031-2.
9
Effect of trends on detrended fluctuation analysis.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jul;64(1 Pt 1):011114. doi: 10.1103/PhysRevE.64.011114. Epub 2001 Jun 26.
10
Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Nov;62(5 Pt A):6103-10. doi: 10.1103/physreve.62.6103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验