Kotnis Bhushan, Kuri Joy
Indian Institute of Science, Department of Electronic Systems Engineering, Bangalore 560012, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062810. doi: 10.1103/PhysRevE.87.062810. Epub 2013 Jun 19.
Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an "adaptive threshold," i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.
许多研究在调查人类社会连接结构(网络)和人类行为适应对传染病传播的影响时,要么假定连接结构是静态的,要么假定网络会根据疫情自行调整(自适应网络)。然而,人类社会联系本质上是动态的或随时间变化的。此外,许多传染病的传播发生的时间尺度与不断演变的网络结构的时间尺度相当。在此,我们旨在量化人类行为适应对时变网络上无症状传染病传播的影响。我们使用连续时间马尔可夫链方法进行全面的随机分析,以计算爆发概率、平均疫情持续时间、疫情再次出现概率等。此外,我们使用平均场理论来计算疫情阈值。通过广泛的模拟验证了理论预测。我们的研究发现了“自适应阈值”的存在,即当易感性(或传染性)率与恢复率的比率低于阈值时,适应性行为可以预防疫情。然而,如果高于阈值,再多的行为适应也无法预防疫情。我们的分析表明,受感染人群的互动模式在维持疫情方面起着主要作用。我们的结果对疫情防控政策具有启示意义,因为只有在受感染民众的互动水平得到控制的情况下,宣传活动和人类行为反应才会有效。