Starnini Michele, Pastor-Satorras Romualdo
Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062807. doi: 10.1103/PhysRevE.87.062807. Epub 2013 Jun 14.
Here we consider the topological properties of the integrated networks emerging from the activity-driven model [N. Perra et al., Sci. Rep. 2, 469 (2012)], a temporal network model recently proposed to explain the power-law degree distribution empirically observed in many real social networks. By means of a mapping to a hidden-variable network model, we provide analytical expressions for the main topological properties of the integrated network, depending on the integration time and the distribution of activity potential characterizing the model. The expressions obtained, exacts in some cases, the results of controlled asymptotic expansions in others, are confirmed by means of extensive numerical simulations. Our analytical approach, which highlights the differences of the model with respect to the empirical observations made in real social networks, can be easily extended to deal with improved, more realistic modifications of the activity-driven network paradigm.
在此,我们考虑由活动驱动模型[N. 佩拉等人,《科学报告》2,469 (2012)]产生的整合网络的拓扑性质,该模型是最近提出的一种时间网络模型,旨在从经验上解释在许多真实社会网络中观察到的幂律度分布。通过映射到一个隐藏变量网络模型,我们给出了整合网络主要拓扑性质的解析表达式,这些表达式取决于整合时间以及表征该模型的活动势分布。所得到的表达式在某些情况下是精确的,在其他情况下是受控渐近展开的结果,通过广泛的数值模拟得到了证实。我们的分析方法突出了该模型与真实社会网络中经验观察结果的差异,并且可以很容易地扩展以处理对活动驱动网络范式的改进且更现实的修正。