Suppr超能文献

风险感知对时变网络中传染病传播的影响。

Effect of risk perception on epidemic spreading in temporal networks.

机构信息

Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France.

Departament de Fisica, Universitat Politecnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain.

出版信息

Phys Rev E. 2018 Jan;97(1-1):012313. doi: 10.1103/PhysRevE.97.012313.

Abstract

Many progresses in the understanding of epidemic spreading models have been obtained thanks to numerous modeling efforts and analytical and numerical studies, considering host populations with very different structures and properties, including complex and temporal interaction networks. Moreover, a number of recent studies have started to go beyond the assumption of an absence of coupling between the spread of a disease and the structure of the contacts on which it unfolds. Models including awareness of the spread have been proposed, to mimic possible precautionary measures taken by individuals that decrease their risk of infection, but have mostly considered static networks. Here, we adapt such a framework to the more realistic case of temporal networks of interactions between individuals. We study the resulting model by analytical and numerical means on both simple models of temporal networks and empirical time-resolved contact data. Analytical results show that the epidemic threshold is not affected by the awareness but that the prevalence can be significantly decreased. Numerical studies on synthetic temporal networks highlight, however, the presence of very strong finite-size effects, resulting in a significant shift of the effective epidemic threshold in the presence of risk awareness. For empirical contact networks, the awareness mechanism leads as well to a shift in the effective threshold and to a strong reduction of the epidemic prevalence.

摘要

由于众多建模工作和分析与数值研究的努力,考虑到宿主群体具有非常不同的结构和特性,包括复杂和随时间变化的相互作用网络,在理解传染病传播模型方面已经取得了许多进展。此外,一些最近的研究已经开始超越疾病传播和其传播所依据的接触结构之间不存在耦合的假设。提出了包含对传播的认识的模型,以模拟个人可能采取的预防措施,从而降低他们的感染风险,但主要考虑了静态网络。在这里,我们将这种框架适应于个体之间相互作用的更现实的时间网络的情况。我们通过对简单的时间网络模型和经验时间分辨的接触数据进行分析和数值研究来研究由此产生的模型。分析结果表明,意识不会影响传染病的阈值,但流行率可以显著降低。然而,在合成时间网络上的数值研究强调了非常强的有限大小效应的存在,这导致在存在风险意识的情况下,有效传染病阈值发生了显著的转移。对于经验接触网络,意识机制同样导致有效阈值的转移和传染病流行率的强烈降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8e4/7217520/324093f96d50/e012313_1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验