Suppr超能文献

基于 PM2.5 成分的美国空气污染监测站点空间聚类框架。

A framework to spatially cluster air pollution monitoring sites in US based on the PM2.5 composition.

机构信息

Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

Environ Int. 2013 Sep;59:244-54. doi: 10.1016/j.envint.2013.06.003. Epub 2013 Jul 9.

Abstract

BACKGROUND

Heterogeneity in the response to PM2.5 is hypothesized to be related to differences in particle composition across monitoring sites which reflect differences in source types as well as climatic and topographic conditions impacting different geographic locations. Identifying spatial patterns in particle composition is a multivariate problem that requires novel methodologies.

OBJECTIVES

Use cluster analysis methods to identify spatial patterns in PM2.5 composition. Verify that the resulting clusters are distinct and informative.

METHODS

109 monitoring sites with 75% reported speciation data during the period 2003-2008 were selected. These sites were categorized based on their average PM2.5 composition over the study period using k-means cluster analysis. The obtained clusters were validated and characterized based on their physico-chemical characteristics, geographic locations, emissions profiles, population density and proximity to major emission sources.

RESULTS

Overall 31 clusters were identified. These include 21 clusters with 2 or more sites which were further grouped into 4 main types using hierarchical clustering. The resulting groupings are chemically meaningful and represent broad differences in emissions. The remaining clusters, encompassing single sites, were characterized based on their particle composition and geographic location.

CONCLUSIONS

The framework presented here provides a novel tool which can be used to identify and further classify sites based on their PM2.5 composition. The solution presented is fairly robust and yielded groupings that were meaningful in the context of air-pollution research.

摘要

背景

人们假设,对 PM2.5 的反应存在异质性,这与监测点的颗粒物成分差异有关,而这些差异反映了源类型的差异以及影响不同地理位置的气候和地形条件的差异。识别颗粒物成分的空间模式是一个多变量问题,需要新的方法。

目的

使用聚类分析方法识别 PM2.5 成分的空间模式。验证得到的聚类是明显且有信息的。

方法

选择了 109 个监测点,这些监测点在 2003 年至 2008 年期间有 75%的报告了特定物质的数据。这些站点根据其在研究期间的平均 PM2.5 成分使用 K-均值聚类分析进行分类。根据其理化特性、地理位置、排放特征、人口密度和与主要排放源的接近程度,对获得的聚类进行验证和描述。

结果

总共确定了 31 个聚类。其中包括 21 个有 2 个或更多站点的聚类,这些聚类进一步使用层次聚类法分为 4 种主要类型。由此产生的分组具有化学意义,代表了排放的广泛差异。其余的聚类,包括单个站点,根据其颗粒物成分和地理位置进行描述。

结论

这里提出的框架提供了一种新的工具,可以用于根据 PM2.5 成分识别和进一步对站点进行分类。所提出的解决方案相当稳健,产生的分组在空气污染研究的背景下具有意义。

相似文献

1
A framework to spatially cluster air pollution monitoring sites in US based on the PM2.5 composition.
Environ Int. 2013 Sep;59:244-54. doi: 10.1016/j.envint.2013.06.003. Epub 2013 Jul 9.
2
Potential air toxics hot spots in truck terminals and cabs.
Res Rep Health Eff Inst. 2012 Dec(172):5-82.
4
The London low emission zone baseline study.
Res Rep Health Eff Inst. 2011 Nov(163):3-79.
5
Multivariate spatial patterns of ambient PM elemental concentrations in Eastern Massachusetts.
Environ Pollut. 2019 Sep;252(Pt B):1942-1952. doi: 10.1016/j.envpol.2019.05.127. Epub 2019 Jun 7.
8
A framework for identifying distinct multipollutant profiles in air pollution data.
Environ Int. 2012 Sep 15;45:112-21. doi: 10.1016/j.envint.2012.04.003. Epub 2012 May 14.

引用本文的文献

2
K-means cluster analysis of cooperative effects of CO, NO, O, PM, PM, and SO on incidence of type 2 diabetes mellitus in the US.
Environ Res. 2022 Sep;212(Pt B):113259. doi: 10.1016/j.envres.2022.113259. Epub 2022 Apr 20.
3
Does Air Pollution Affect Prosocial Behaviour?
Front Psychol. 2022 Mar 28;13:752096. doi: 10.3389/fpsyg.2022.752096. eCollection 2022.
6
Parkinson's disease aggravation in association with fine particle components in New York State.
Environ Res. 2021 Oct;201:111554. doi: 10.1016/j.envres.2021.111554. Epub 2021 Jun 25.
7
Understanding ozone pollution in the Yangtze River Delta of eastern China from the perspective of diurnal cycles.
Sci Total Environ. 2021 Jan 15;752:141928. doi: 10.1016/j.scitotenv.2020.141928. Epub 2020 Aug 22.
9
Low Levels of Air Pollution and Health: Effect Estimates, Methodological Challenges, and Future Directions.
Curr Environ Health Rep. 2019 Sep;6(3):105-115. doi: 10.1007/s40572-019-00235-7.

本文引用的文献

2
A framework for identifying distinct multipollutant profiles in air pollution data.
Environ Int. 2012 Sep 15;45:112-21. doi: 10.1016/j.envint.2012.04.003. Epub 2012 May 14.
3
What does multi-pollutant air pollution research mean?
Am J Respir Crit Care Med. 2011 Jan 1;183(1):4-6. doi: 10.1164/rccm.201009-1520ED.
4
Time-series analysis of mortality effects of fine particulate matter components in Detroit and Seattle.
Environ Health Perspect. 2011 Apr;119(4):461-6. doi: 10.1289/ehp.1002613. Epub 2010 Dec 30.
6
Protecting human health from air pollution: shifting from a single-pollutant to a multipollutant approach.
Epidemiology. 2010 Mar;21(2):187-94. doi: 10.1097/EDE.0b013e3181cc86e8.
8
Residual oil combustion: 2. Distributions of airborne nickel and vanadium within New York City.
J Expo Sci Environ Epidemiol. 2010 Jun;20(4):342-50. doi: 10.1038/jes.2009.28. Epub 2009 May 13.
9
Mapping of background air pollution at a fine spatial scale across the European Union.
Sci Total Environ. 2009 Mar 1;407(6):1852-67. doi: 10.1016/j.scitotenv.2008.11.048. Epub 2009 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验