Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA.
Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA.
J Physiol. 2023 Dec;601(23):5341-5366. doi: 10.1113/JP284999. Epub 2023 Oct 17.
We show here that hyperpolarization-activated current (I ) unexpectedly acts to inhibit the activity of dorsal root ganglion (DRG) neurons expressing WT Nav1.7, the largest inward current and primary driver of DRG neuronal firing, and hyperexcitable DRG neurons expressing a gain-of-function Nav1.7 mutation that causes inherited erythromelalgia (IEM), a human genetic model of neuropathic pain. In this study we created a kinetic model of I and used it, in combination with dynamic-clamp, to study I function in DRG neurons. We show, for the first time, that I increases rheobase and reduces the firing probability in small DRG neurons, and demonstrate that the amplitude of subthreshold oscillations is reduced by I . Our results show that I , due to slow gating, is not deactivated during action potentials (APs) and has a striking damping action, which reverses from depolarizing to hyperpolarizing, close to the threshold for AP generation. Moreover, we show that I reverses the hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes IEM. In the aggregate, our results show that I unexpectedly has strikingly different effects in DRG neurons as compared to previously- and well-studied cardiac cells. Within DRG neurons where Nav1.7 is present, I reduces depolarizing sodium current inflow due to enhancement of Nav1.7 channel fast inactivation and creates additional damping action by reversal of I direction from depolarizing to hyperpolarizing close to the threshold for AP generation. These actions of I limit the firing of DRG neurons expressing WT Nav1.7 and reverse the hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes IEM. KEY POINTS: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the molecular determinants of hyperpolarization-activated current (I ) have been characterized as a 'pain pacemaker', and thus considered to be a potential molecular target for pain therapeutics. Dorsal root ganglion (DRG) neurons express Nav1.7, a channel that is not present in central neurons or cardiac tissue. Gain-of-function mutations (GOF) of Nav1.7 identified in inherited erythromelalgia (IEM), a human genetic model of neuropathic pain, produce DRG neuron hyperexcitability, which in turn produces severe pain. We found that I increases rheobase and reduces firing probability in small DRG neurons expressing WT Nav1.7, and demonstrate that the amplitude of subthreshold oscillations is reduced by I . We also demonstrate that I reverses the hyperexcitability of DRG neurons expressing a GOF Nav1.7 mutation (L858H) that causes IEM. Our results show that, in contrast to cardiac cells and CNS neurons, I acts to stabilize DRG neuron excitability and prevents excessive firing.
我们在此表明,超极化激活电流(I)出人意料地抑制了表达 WT Nav1.7 的背根神经节(DRG)神经元的活性,而 WT Nav1.7 是最大的内向电流,也是 DRG 神经元放电的主要驱动因素,也抑制了表达获得性功能 Nav1.7 突变的易激 DRG 神经元的活性,该突变导致遗传性红斑性肢痛症(IEM),这是一种神经性疼痛的人类遗传模型。在这项研究中,我们创建了一个 I 的动力学模型,并结合动态钳位技术,研究了 I 在 DRG 神经元中的功能。我们首次表明,I 增加了自发放电阈值并降低了小 DRG 神经元的放电概率,并证明了亚阈振荡的幅度被 I 减小。我们的结果表明,由于门控缓慢,I 在动作电位(AP)期间不会失活,并具有惊人的阻尼作用,该作用从去极化变为超极化,接近 AP 产生的阈值。此外,我们表明,I 逆转了导致 IEM 的表达获得性功能 Nav1.7 突变的 DRG 神经元的过度兴奋。总之,我们的结果表明,I 在 DRG 神经元中的作用与先前和深入研究的心脏细胞中的作用明显不同。在存在 Nav1.7 的 DRG 神经元中,I 通过增强 Nav1.7 通道的快速失活来增加去极化钠离子电流的流入,并通过将 I 的方向从去极化反转到超极化来产生额外的阻尼作用,该作用接近 AP 产生的阈值。这些 I 的作用限制了表达 WT Nav1.7 的 DRG 神经元的放电,并逆转了导致 IEM 的表达获得性功能 Nav1.7 突变的 DRG 神经元的过度兴奋。关键点:超极化激活环核苷酸门控(HCN)通道是超极化激活电流(I)的分子决定因素,已被表征为“疼痛起搏器”,因此被认为是疼痛治疗的潜在分子靶点。背根神经节(DRG)神经元表达 Nav1.7,这是一种在中枢神经元或心脏组织中不存在的通道。在遗传性红斑性肢痛症(IEM)中发现的 Nav1.7 的获得性功能突变(GOF),一种神经性疼痛的人类遗传模型,产生了 DRG 神经元的过度兴奋,进而产生了严重的疼痛。我们发现,I 增加了表达 WT Nav1.7 的小 DRG 神经元的自发放电阈值并降低了其放电概率,并证明了 I 降低了亚阈振荡的幅度。我们还证明,I 逆转了导致 IEM 的表达 GOF Nav1.7 突变(L858H)的 DRG 神经元的过度兴奋。我们的结果表明,与心脏细胞和中枢神经系统神经元不同,I 作用是稳定 DRG 神经元的兴奋性并防止过度放电。