Division of Medicinal Chemistry, College of Pharmacy, The University of Texas, Austin, TX 78712-1074, USA.
FEBS Lett. 2013 Sep 2;587(17):2842-50. doi: 10.1016/j.febslet.2013.07.006. Epub 2013 Jul 10.
trans-3-Chloroacrylic acid dehalogenase (CaaD) catalyzes the hydrolytic dehalogenation of trans-3-haloacrylates to yield malonate semialdehyde by a mechanism utilizing βPro-1, αArg-8, αArg-11, and αGlu-52. These residues are implicated in a promiscuous hydratase activity where 2-oxo-3-pentynoate is processed to acetopyruvate. The roles of three nearby residues (βAsn-39, αPhe-39, and αPhe-50) are unexplored. Mutants were constructed at these positions (βN39A, αF39A, αF39T, αF50A and αF50Y) and kinetic parameters determined along with those of the αR8K and αR11K mutants. Analysis indicates that αArg-8, αArg-11, and βAsn-39 are critical for dehalogenase activity whereas αArg-11 and αPhe-50 are critical for hydratase activity. Docking studies suggest structural bases for these observations.
反式-3-氯丙烯酸脱卤酶(CaaD)通过利用βPro-1、αArg-8、αArg-11 和αGlu-52 的机制,催化反式-3-卤代丙烯酸盐的水解脱卤,生成丙二醛半醛。这些残基涉及一种混杂的水合酶活性,其中 2-氧代-3-戊炔酸被加工成乙酰丙酮酸。三个附近残基(βAsn-39、αPhe-39 和αPhe-50)的作用尚未探索。在这些位置构建了突变体(βN39A、αF39A、αF39T、αF50A 和αF50Y),并确定了动力学参数以及αR8K 和αR11K 突变体的动力学参数。分析表明,αArg-8、αArg-11 和βAsn-39 对脱卤酶活性至关重要,而αArg-11 和αPhe-50 对水合酶活性至关重要。对接研究为这些观察结果提供了结构基础。