Bren School of Environmental Science and Management, Earth Research Institute, and UC Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California, USA.
Appl Environ Microbiol. 2013 Sep;79(18):5616-24. doi: 10.1128/AEM.01680-13. Epub 2013 Jul 12.
Nanoscale titanium dioxide (TiO2) is increasingly used in consumer goods and is entering waste streams, thereby exposing and potentially affecting environmental microbes. Protozoans could either take up TiO2 directly from water and sediments or acquire TiO2 during bactivory (ingestion of bacteria) of TiO2-encrusted bacteria. Here, the route of exposure of the ciliated protozoan Tetrahymena thermophila to TiO2 was varied and the growth of, and uptake and accumulation of TiO2 by, T. thermophila were measured. While TiO2 did not affect T. thermophila swimming or cellular morphology, direct TiO2 exposure in rich growth medium resulted in a lower population yield. When TiO2 exposure was by bactivory of Pseudomonas aeruginosa, the T. thermophila population yield and growth rate were lower than those that occurred during the bactivory of non-TiO2-encrusted bacteria. Regardless of the feeding mode, T. thermophila cells internalized TiO2 into their food vacuoles. Biomagnification of TiO2 was not observed; this was attributed to the observation that TiO2 appeared to be unable to cross the food vacuole membrane and enter the cytoplasm. Nevertheless, our findings imply that TiO2 could be transferred into higher trophic levels within food webs and that the food web could be affected by the decreased growth rate and yield of organisms near the base of the web.
纳米级二氧化钛 (TiO2) 越来越多地用于消费品,并进入废物流,从而暴露并可能影响环境中的微生物。原生动物可以直接从水中和沉积物中摄取 TiO2,或者在吞噬(吞噬 TiO2 包裹的细菌)过程中获得 TiO2。在这里,纤毛原生动物嗜热四膜虫暴露于 TiO2 的途径是不同的,并且测量了嗜热四膜虫的生长、TiO2 的摄取和积累。虽然 TiO2 不会影响嗜热四膜虫的游泳或细胞形态,但在丰富的生长培养基中直接暴露于 TiO2 会导致种群产量降低。当 TiO2 的暴露是通过铜绿假单胞菌的吞噬作用时,嗜热四膜虫的种群产量和生长速率低于吞噬非 TiO2 包裹的细菌时的情况。无论喂养模式如何,嗜热四膜虫细胞都将 TiO2 内化到其食物泡中。没有观察到 TiO2 的生物放大作用;这归因于观察到 TiO2 似乎无法穿过食物泡膜并进入细胞质。尽管如此,我们的发现表明 TiO2 可能会转移到食物网中的更高营养级,并且食物网可能会受到靠近网络基础的生物体生长速率和产量下降的影响。