Suppr超能文献

基于各向异性分布函数的测地线回归及其在老化研究中的应用。

Geodesic regression on orientation distribution functions with its application to an aging study.

机构信息

Department of Biomedical Engineering, National University of Singapore, Singapore.

Department of Mathematics, National University of Singapore, Singapore.

出版信息

Neuroimage. 2014 Feb 15;87:416-26. doi: 10.1016/j.neuroimage.2013.06.081. Epub 2013 Jul 11.

Abstract

In this paper, we treat orientation distribution functions (ODFs) derived from high angular resolution diffusion imaging (HARDI) as elements of a Riemannian manifold and present a method for geodesic regression on this manifold. In order to find the optimal regression model, we pose this as a least-squares problem involving the sum-of-squared geodesic distances between observed ODFs and their model fitted data. We derive the appropriate gradient terms and employ gradient descent to find the minimizer of this least-squares optimization problem. In addition, we show how to perform statistical testing for determining the significance of the relationship between the manifold-valued regressors and the real-valued regressands. Experiments on both synthetic and real human data are presented. In particular, we examine aging effects on HARDI via geodesic regression of ODFs in normal adults aged 22 years old and above.

摘要

在本文中,我们将高角分辨率扩散成像(HARDI)得到的方向分布函数(ODF)视为黎曼流形的元素,并提出了一种在该流形上进行测地线回归的方法。为了找到最佳的回归模型,我们将其表述为一个最小二乘问题,该问题涉及到观测到的 ODF 与其模型拟合数据之间的测地线距离的平方和。我们推导出了适当的梯度项,并采用梯度下降法找到这个最小二乘优化问题的最小值。此外,我们还展示了如何进行统计检验,以确定流形值回归量与实数值因变量之间关系的显著性。我们对合成数据和真实的人类数据进行了实验。特别是,我们通过对 22 岁及以上正常成年人的 ODF 进行测地线回归,研究了 HARDI 的老化效应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验