Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA.
Analyst. 2013 Oct 7;138(19):5600-9. doi: 10.1039/c3an01005h.
We report a study on chemiluminescence-based chemical analyses using luminol molecules covalently attached to 10 nm diameter gold nanoparticles (GNPs). Chemiluminescence (CL) has been systematically studied under two schemes by varying the concentrations of luminol-labeled GNPs and Fe(CN)6 catalyst, respectively. The CL signal of luminol-labeled GNPs is enhanced by 5 to 10 times compared to the bulk luminol solutions of the same concentration. The log-log plot of the CL signal versus the number of luminol-labeled GNPs suspended in a standard 96-well plate shows two characteristic linear curves with distinct slopes across eight orders of magnitude variation in the GNP quantity (from 1.82 × 10(2) to 1.82 × 10(10) GNPs per well). The detection limit represented by the cross-point of these two curves can reach down to ~6.1 × 10(5) GNPs per well (corresponding to 1.0 × 10(-14) M GNP and 2.4 × 10(-11) M equivalent luminol concentration). The attachment of luminol molecules to GNP nano-carriers allows a large amount of luminol to be placed in a greatly reduced volume (or area) toward developing miniaturized CL sensors. We have demonstrated this by preloading dried luminol-labeled GNPs in homemade microwell arrays (with a volume of ~12 μL per well). A linear log-log curve can be obtained across the full range from 1 × 10(3) to 1 × 10(10) GNPs per microwell. The CL signal was detectable with as few as ~1000 GNPs. We have further applied this microwell method to the detection of highly diluted blood samples, in both intact and lysed forms, which releases Fe(3+)-containing hemoglobin to catalyze luminol CL. The lysed blood sample can be detected even after a 10(8) fold dilution (corresponding to ~0.18 cells per well). This ultrasensitive CL detection method may be readily adapted for developing various miniaturized multiplex biosensors for rapid chemical/biochemical analyses.
我们报告了一项关于化学发光的研究,该研究使用化学发光分子鲁米诺共价连接到直径为 10nm 的金纳米粒子(GNPs)上。通过改变鲁米诺标记的 GNPs 和 Fe(CN)6催化剂的浓度,分别对化学发光(CL)进行了系统的研究。与相同浓度的 bulk luminol 溶液相比,鲁米诺标记的 GNPs 的 CL 信号增强了 5 到 10 倍。在标准的 96 孔板中悬浮的鲁米诺标记的 GNPs 的 CL 信号对数与数量的对数图显示了两条具有明显斜率的特征线性曲线,跨越了 GNPs 数量的八个数量级变化(从 1.82×10(2)到 1.82×10(10)个/孔)。这两条曲线交点代表的检测限可以低至6.1×10(5)个/孔(相当于 1.0×10(-14) M GNPs 和 2.4×10(-11) M 等效鲁米诺浓度)。鲁米诺分子与 GNP 纳米载体的连接使得大量的鲁米诺可以被放置在大大减小的体积(或面积)中,从而开发出微型 CL 传感器。我们通过在自制的微孔阵列中预先加载干燥的鲁米诺标记的 GNPs 来证明这一点(每个微孔的体积约为 12μL)。可以从 1×10(3)到 1×10(10)个/微孔的整个范围内获得线性对数对数曲线。可以检测到低至1000 个 GNPs 的 CL 信号。我们还将这种微孔方法应用于完整和裂解形式的高度稀释的血液样本的检测中,这两种形式都会释放含铁血红蛋白来催化鲁米诺 CL。即使经过 10(8)倍稀释(相当于每个微孔~0.18 个细胞),也可以检测到裂解的血液样本。这种超灵敏的 CL 检测方法可能很容易适应开发用于快速化学/生化分析的各种微型化多重生物传感器。