Gusmão George Mário de Araújo Silva, De Queiroz Thiago Vinicius Veras, Pompeu Guilherme Ferrer, Menezes Filho Paulo Fonseca, da Silva Cláudio Heliomar Vicente
Federal University of Pernambuco, Av. Prof. Moraes Rego, Recife, Brazil.
Indian J Dent Res. 2013 Jan-Feb;24(1):60-5. doi: 10.4103/0970-9290.114954.
The objective of this work was to assess the influence of storage time and pH cycling on water sorption by different composite resins.
Nine resin brands were selected and divided into groups: G1-ROK (SDI), G2-ICE (SDI), G3-GLACIER (SDI), G4-Z350 (3M/ESPE), G5-Z250 (3M/ESPE), G6-TPH 3 (DENTSPLY), G7-ESTHET X (DENTSPLY), G8-SUPRAFILL (SSWHITE), and G9-MASTERFILL (BIODINΒMICS). Ninety specimens, ten per group, were obtained using an aluminum matrix. Specimens measured 10 mm diameter × 2 mm width. The groups were divided into subgroups according to the immersion solution: A - control (n = 05) stored in artificial saliva pH = 7.0 and B-test (n = 05) submitted to seven consecutive days of pH cycling (cariogenic challenger) that consisted of immersion in a pH° = 4.3 solution for 6 h followed by immersion in a pH¹ =7.0 solution for 18 h and stored in artificial saliva pH = 7.0 until the end of the experiment. The specimens were weighed on six occasions: T 0 (after fabrication), T 1 (24 h), T 2 (7 days), T 3 (15 days), T 4 (30 days), T 5 (60 days), and then analyzed. The water sorption was determined by the weight difference between the specimens at the time intervals.
The mean weight gain was exactly the same for both the subgroups within group G4. The highest means for the control subgroup were found in groups: G1, G5, G7, G8, and G9. For the pH cycling subgroup, the highest means were found in G2, G3, and G6; however, significant differences between the subgroups compared to the mean-weight gain were found for G1, G5, and G7.
The water sorption of composite resins is dependent upon their storage time. The pH cycling created a significant impact on resins G1, G5, and G7. The sorption and solubility of composite resins vary according to their chemical composition.