Suppr超能文献

用于高效经皮感应电能传输的印刷螺旋线圈的设计与优化。

Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission.

出版信息

IEEE Trans Biomed Circuits Syst. 2007 Sep;1(3):193-202. doi: 10.1109/TBCAS.2007.913130.

Abstract

The next generation of implantable high-power neuroprosthetic devices such as visual prostheses and brain computer interfaces are going to be powered by transcutaneous inductive power links formed between a pair of printed spiral coils (PSC) that are batch-fabricated using micromachining technology. Optimizing the power efficiency of the wireless link is imperative to minimize the size of the external energy source, heating dissipation in the tissue, and interference with other devices. Previous design methodologies for coils made of 1-D filaments are not comprehensive and accurate enough to consider all geometrical aspects of PSCs with planar 3-D conductors as well as design constraints imposed by implantable device application and fabrication technology. We have outlined the theoretical foundation of optimal power transmission efficiency in an inductive link, and combined it with semi-empirical models to predict parasitic components in PSCs. We have used this foundation to devise an iterative PSC design methodology that starts with a set of realistic design constraints and ends with the optimal PSC pair geometries. We have executed this procedure on two design examples at 1 and 5 MHz achieving power transmission efficiencies of 41.2% and 85.8%, respectively, at 10-mm spacing. All results are verified with simulations using a commercial field solver (HFSS) as well as measurements using PSCs fabricated on printed circuit boards.

摘要

下一代植入式高功率神经修复设备,如视觉假体和脑机接口,将通过使用微加工技术批量制造的一对印刷螺旋线圈 (PSC) 之间形成的经皮感应功率链路来供电。优化无线链路的功率效率对于最小化外部能源的尺寸、组织中的热耗散以及与其他设备的干扰至关重要。以前基于 1-D 细丝的线圈设计方法不够全面和准确,无法考虑具有平面 3-D 导体的 PSCs 的所有几何方面,也无法考虑到可植入设备应用和制造技术施加的设计限制。我们已经概述了感应链路中最佳功率传输效率的理论基础,并结合半经验模型来预测 PSCs 中的寄生元件。我们使用这个基础来设计一种迭代的 PSC 设计方法,该方法从一组现实的设计约束开始,以最佳的 PSC 对几何形状结束。我们在 1MHz 和 5MHz 的两个设计示例上执行了此过程,在 10mm 的间距下分别实现了 41.2%和 85.8%的功率传输效率。所有结果都通过使用商业场求解器 (HFSS) 进行仿真以及使用印刷电路板上制造的 PSCs 进行测量进行了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验