Suppr超能文献

一种用于全基因组药物基因组学研究中分析群体药代动力学数据的高效稳健方法:广义估计方程方法。

An efficient and robust method for analyzing population pharmacokinetic data in genome-wide pharmacogenomic studies: a generalized estimating equation approach.

机构信息

Clinical Research Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan; Graduate School of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan; Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama 350-0295, Japan.

出版信息

Stat Med. 2013 Nov 30;32(27):4838-58. doi: 10.1002/sim.5895. Epub 2013 Jul 14.

Abstract

Powerful array-based single-nucleotide polymorphism-typing platforms have recently heralded a new era in which genome-wide studies are conducted with increasing frequency. A genetic polymorphism associated with population pharmacokinetics (PK) is typically analyzed using nonlinear mixed-effect models (NLMM). Applying NLMM to large-scale data, such as those generated by genome-wide studies, raises several issues related to the assumption of random effects as follows: (i) computation time: it takes a long time to compute the marginal likelihood; (ii) convergence of iterative calculation: an adaptive Gauss-Hermite quadrature is generally used to estimate NLMM; however, iterative calculations may not converge in complex models; and (iii) random-effects misspecification leads to slightly inflated type-I error rates. As an alternative effective approach to resolving these issues, in this article, we propose a generalized estimating equation (GEE) approach for analyzing population PK data. In general, GEE analysis does not account for interindividual variability in PK parameters; therefore, the usual GEE estimators cannot be interpreted straightforwardly, and their validities have not been justified. Here, we propose valid inference methods for using GEE even under conditions of interindividual variability and provide theoretical justifications of the proposed GEE estimators for population PK data. In numerical evaluations by simulations, the proposed GEE approach exhibited high computational speed and stability relative to the NLMM approach. Furthermore, the NLMM analysis was sensitive to the misspecification of the random-effects distribution, and the proposed GEE inference is valid for any distributional form. We provided an illustration by using data from a genome-wide pharmacogenomic study of an anticancer drug.

摘要

近年来,强大的基于阵列的单核苷酸多态性分型平台开创了一个新纪元,越来越频繁地进行全基因组研究。与群体药代动力学(PK)相关的遗传多态性通常使用非线性混合效应模型(NLMM)进行分析。将 NLMM 应用于大规模数据,例如全基因组研究产生的数据,会引发与随机效应假设相关的几个问题,如下所示:(i)计算时间:计算边际似然需要很长时间;(ii)迭代计算的收敛性:通常使用自适应高斯-赫尔墨特求积法来估计 NLMM;然而,在复杂模型中,迭代计算可能不会收敛;(iii)随机效应的指定不当会导致略微膨胀的Ⅰ型错误率。作为解决这些问题的另一种有效方法,本文提出了一种用于分析群体 PK 数据的广义估计方程(GEE)方法。一般来说,GEE 分析不考虑 PK 参数的个体间变异性;因此,通常的 GEE 估计量不能直接解释,其有效性也没有得到证明。在这里,我们提出了在存在个体间变异性的情况下使用 GEE 的有效推断方法,并为群体 PK 数据提供了所提出的 GEE 估计量的理论依据。在通过模拟进行的数值评估中,与 NLMM 方法相比,所提出的 GEE 方法表现出较高的计算速度和稳定性。此外,NLMM 分析对随机效应分布的指定不当很敏感,而所提出的 GEE 推断对于任何分布形式都是有效的。我们通过使用抗癌药物全基因组药物基因组学研究的数据进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验