Suppr超能文献

具有指定错误的随机效应分布的非线性混合效应模型。

Nonlinear mixed-effects models with misspecified random-effects distribution.

机构信息

Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, UK.

出版信息

Pharm Stat. 2020 May;19(3):187-201. doi: 10.1002/pst.1981. Epub 2019 Oct 29.

Abstract

Nonlinear mixed-effects models are being widely used for the analysis of longitudinal data, especially from pharmaceutical research. They use random effects which are latent and unobservable variables so the random-effects distribution is subject to misspecification in practice. In this paper, we first study the consequences of misspecifying the random-effects distribution in nonlinear mixed-effects models. Our study is focused on Gauss-Hermite quadrature, which is now the routine method for calculation of the marginal likelihood in mixed models. We then present a formal diagnostic test to check the appropriateness of the assumed random-effects distribution in nonlinear mixed-effects models, which is very useful for real data analysis. Our findings show that the estimates of fixed-effects parameters in nonlinear mixed-effects models are generally robust to deviations from normality of the random-effects distribution, but the estimates of variance components are very sensitive to the distributional assumption of random effects. Furthermore, a misspecified random-effects distribution will either overestimate or underestimate the predictions of random effects. We illustrate the results using a real data application from an intensive pharmacokinetic study.

摘要

非线性混合效应模型被广泛应用于分析纵向数据,特别是来自药物研究的数据。它们使用随机效应,这些效应是潜在的和不可观察的变量,因此在实践中随机效应分布可能会被错误指定。在本文中,我们首先研究了在非线性混合效应模型中错误指定随机效应分布的后果。我们的研究重点是高斯-埃尔米特求积,这是目前混合模型中计算边际似然的常规方法。然后,我们提出了一种正式的诊断检验,以检查非线性混合效应模型中假设的随机效应分布的适当性,这对于实际数据分析非常有用。我们的研究结果表明,非线性混合效应模型中固定效应参数的估计值通常对随机效应分布的正态性偏差具有鲁棒性,但方差分量的估计值对随机效应的分布假设非常敏感。此外,错误指定的随机效应分布会高估或低估随机效应的预测。我们使用来自强化药代动力学研究的真实数据应用来说明结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验