Wang Yingxue, Liu Shih-Chii
Institute of Neuroinformatics, University of Zürich and ETH Zürich, CH-8057 Zürich, Switzerland.
IEEE Trans Biomed Circuits Syst. 2013 Jun;7(3):307-18. doi: 10.1109/TBCAS.2012.2199487.
Capturing the functionality of active dendritic processing into abstract mathematical models will help us to understand the role of complex biophysical neurons in neuronal computation and to build future useful neuromorphic analog Very Large Scale Integrated (aVLSI) neuronal devices. Previous work based on an aVLSI multi-compartmental neuron model demonstrates that the compartmental response in the presence of either of two widely studied classes of active mechanisms, is a nonlinear sigmoidal function of the degree of either input temporal synchrony OR input clustering level. Using the same silicon model, this work expounds the interaction between both active mechanisms in a compartment receiving input patterns of varying temporal AND spatial clustering structure and demonstrates that this compartmental response can be captured by a combined sigmoid and radial-basis function over both input dimensions. This paper further shows that the response to input spatio-temporal patterns in a one-dimensional multi-compartmental dendrite, can be described by a radial-basis like function of the degree of temporal synchrony between the inter-compartmental inputs.
将活跃树突处理的功能纳入抽象数学模型,将有助于我们理解复杂生物物理神经元在神经计算中的作用,并构建未来有用的神经形态模拟超大规模集成电路(aVLSI)神经元器件。先前基于aVLSI多室神经元模型的工作表明,在两种广泛研究的活跃机制中的任何一种存在的情况下,室响应是输入时间同步程度或输入聚类水平的非线性S形函数。利用相同的硅模型,这项工作阐述了在接收具有不同时间和空间聚类结构的输入模式的室中两种活跃机制之间的相互作用,并表明这种室响应可以通过在两个输入维度上的组合S形函数和径向基函数来捕获。本文进一步表明,一维多室树突对输入时空模式的响应,可以用隔室间输入之间时间同步程度的径向基样函数来描述。