Institute of Neuroinformatics, University of Zürich and ETH Zürich, Zürich, Switzerland.
Neural Comput. 2010 Aug;22(8):2086-112. doi: 10.1162/neco.2010.06-09-1030.
With the advent of new experimental evidence showing that dendrites play an active role in processing a neuron's inputs, we revisit the question of a suitable abstraction for the computing function of a neuron in processing spatiotemporal input patterns. Although the integrative role of a neuron in relation to the spatial clustering of synaptic inputs can be described by a two-layer neural network, no corresponding abstraction has yet been described for how a neuron processes temporal input patterns on the dendrites. We address this void using a real-time aVLSI (analog very-large-scale-integrated) dendritic compartmental model, which incorporates two widely studied classes of regenerative event mechanisms: one is mediated by voltage-gated ion channels and the other by transmitter-gated NMDA channels. From this model, we find that the response of a dendritic compartment can be described as a nonlinear sigmoidal function of both the degree of input temporal synchrony and the synaptic input spatial clustering. We propose that a neuron with active dendrites can be modeled as a multilayer network that selectively amplifies responses to relevant spatiotemporal input spike patterns.
随着新的实验证据表明树突在处理神经元输入方面发挥着积极的作用,我们重新审视了在处理时空输入模式时,神经元计算功能的合适抽象的问题。虽然神经元在突触输入的空间聚类方面的整合作用可以用两层神经网络来描述,但对于神经元如何在树突上处理时间输入模式,还没有相应的抽象描述。我们使用实时的 aVLSI(模拟超大规模集成)树突室模型来解决这个空白,该模型结合了两种广泛研究的再生事件机制:一种是由电压门控离子通道介导的,另一种是由递质门控 NMDA 通道介导的。从这个模型中,我们发现树突室的响应可以被描述为输入时间同步程度和突触输入空间聚类的非线性 sigmoid 函数。我们提出,具有活跃树突的神经元可以被建模为一个多层网络,该网络选择性地放大对相关时空输入尖峰模式的响应。