Manchester Breast Centre & Breakthrough Breast Cancer Research Unit; Faculty Institute of Cancer Sciences; University of Manchester; Manchester, UK.
Cell Cycle. 2013 Sep 1;12(17):2723-32. doi: 10.4161/cc.25695. Epub 2013 Jul 30.
Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and "glycolytic reprogramming" in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is "mirrored" by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating "metabolic symbiosis" and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting "fibroblast addiction" in primary and metastatic tumor cells may expose a critical Achilles' heel, leading to disease regression in both sporadic and familial cancers.
代谢偶联存在于癌细胞中的线粒体和基质成纤维细胞中的分解代谢之间,促进肿瘤生长、复发、转移,并预测抗癌药物耐药性。分解代谢的成纤维细胞向合成代谢的癌细胞捐赠必要的燃料(如 L-乳酸、酮体、谷氨酰胺、其他氨基酸和脂肪酸),通过三羧酸 (TCA) 循环和氧化磷酸化 (OXPHOS) 进行代谢。这提供了一种简单的机制,通过该机制,代谢能量和生物质从宿主微环境转移到癌细胞中。最近,我们表明,肿瘤微环境中的分解代谢和“糖酵解重编程”是由上皮癌细胞中的癌基因激活和炎症协调的。癌基因通过旁分泌氧化应激驱动相邻正常成纤维细胞中癌症相关成纤维细胞表型的发生。这种癌基因诱导的恶性转化与相邻基质成纤维细胞中 Cav-1( caveolin-1 )的缺失和 MCT4 的增加“镜像”,功能上反映了肿瘤微环境中的分解代谢。使用 BRCA1 缺陷的乳腺癌和卵巢癌细胞几乎可以获得相同的发现。因此,癌基因激活(RAS、NFkB、TGF-β)和/或肿瘤抑制基因丢失(BRCA1)对相邻基质成纤维细胞具有类似的功能影响,启动“代谢共生”和癌症相关成纤维细胞表型。可以使用代谢上使氧化癌细胞与其糖酵解基质解偶联或调节氧化应激的新治疗策略来靶向这种致命亚型的癌症。靶向原发性和转移性肿瘤细胞中的“成纤维细胞成瘾性”可能会暴露出一个关键的弱点,导致散发性和家族性癌症的疾病消退。