Suppr超能文献

使用基于网络的进化模糊神经网络预测分包商绩效。

Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.

作者信息

Ko Chien-Ho

机构信息

Department of Civil Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan.

出版信息

ScientificWorldJournal. 2013 Jun 19;2013:729525. doi: 10.1155/2013/729525. Print 2013.

Abstract

Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

摘要

分包商的表现直接影响项目的成功。使用不合适的分包商可能会导致整个项目出现个别工作延误、成本超支和质量缺陷。本研究开发了基于网络的进化模糊神经网络(EFNN)来预测分包商的表现。EFNN是遗传算法(GA)、模糊逻辑(FL)和神经网络(NN)的融合。FL主要用于模拟高水平的决策过程并处理建筑行业中的不确定性。在预测分包商表现时,NN用于识别先前表现与未来状态之间的关联。GA用于优化FL和NN所需的参数。EFNN使用浮点数对FL和NN进行编码,以缩短字符串长度。使用多切点交叉算子来探索参数并保持解的合法性。最后,使用实际分包商验证了所提出的EFNN的适用性。EFNN使用22个历史模式进行进化,并使用12个未见案例进行测试。应用结果表明,所提出的EFNN在预测分包商表现方面优于FL和NN。所提出的方法提高了预测准确性,减少了预测分包商表现所需的工作量,为现场操作人员提供了基于网络的远程访问可靠、科学预测机制的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a5/3705785/7a7f5e1c0ee4/TSWJ2013-729525.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验