Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Plant J. 2013 Oct;76(2):297-307. doi: 10.1111/tpj.12290. Epub 2013 Aug 17.
Aluminum (Al) toxicity is one of the major limiting factors for crop production on acid soils that comprise significant portions of the world's lands. Aluminum resistance in the cereal crop Sorghum bicolor is mainly achieved by Al-activated root apical citrate exudation, which is mediated by the plasma membrane localized citrate efflux transporter encoded by SbMATE. Here we precisely localize tissue- and cell-specific Al toxicity responses as well as SbMATE gene and protein expression in root tips of an Al-resistant near-isogenic line (NIL). We found that Al induced the greatest cell damage and generation of reactive oxygen species specifically in the root distal transition zone (DTZ), a region 1-3 mm behind the root tip where transition from cell division to cell elongation occurs. These findings indicate that the root DTZ is the primary region of root Al stress. Furthermore, Al-induced SbMATE gene and protein expression were specifically localized to the epidermal and outer cortical cell layers of the DTZ in the Al-resistant NIL, and the process was precisely coincident with the time course of Al induction of SbMATE expression and the onset of the recovery of roots from Al-induced damage. These findings show that SbMATE gene and protein expression are induced when and where the root cells experience the greatest Al stress. Hence, Al-resistant sorghum plants have evolved an effective strategy to precisely localize root citrate exudation to the specific site of greatest Al-induced root damage, which minimizes plant carbon loss while maximizing protection of the root cells most susceptible to Al damage.
铝(Al)毒性是酸性土壤上作物生产的主要限制因素之一,而酸性土壤占据了世界土地的很大一部分。谷物作物高粱对铝的抗性主要通过 Al 激活的根尖质外体柠檬酸分泌来实现,这是由质膜定位的柠檬酸外排转运蛋白 SbMATE 介导的。在这里,我们精确地定位了组织和细胞特异性的 Al 毒性反应以及 SbMATE 基因和蛋白质在 Al 抗性近等基因系(NIL)根尖中的表达。我们发现,Al 特别诱导根尖远过渡区(DTZ)的最大细胞损伤和活性氧的产生,该区域位于根尖后 1-3 毫米处,细胞分裂到细胞伸长的转变发生在这里。这些发现表明,根的 DTZ 是根 Al 胁迫的主要区域。此外,在 Al 抗性 NIL 中,Al 诱导的 SbMATE 基因和蛋白质表达被特异性地定位于 DTZ 的表皮和外皮层细胞层,这个过程与 SbMATE 表达的 Al 诱导时间进程以及根从 Al 诱导的损伤中恢复的起始时间精确吻合。这些发现表明,当根细胞经历最大的 Al 胁迫时,SbMATE 基因和蛋白质表达被诱导。因此,耐铝高粱植物已经进化出一种有效的策略,将根柠檬酸分泌精确地定位到最大 Al 诱导根损伤的特定部位,从而最大限度地减少植物碳损失,同时最大限度地保护对 Al 损伤最敏感的根细胞。