Department of Neurobiology, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
Cell Death Dis. 2013 Jul 18;4(7):e726. doi: 10.1038/cddis.2013.245.
Lymphocytes form cell-cell connections by various mechanisms, including intercellular networks through actin-supported long-range plasma membrane (PM) extensions, termed tunneling nanotubes (TNTs). In this study, we tested in vitro whether TNTs form between human antigen-presenting B cells and T cells following cell contact and whether they enable the transfer of PM-associated proteins, such as green fluorescent protein (GFP)-tagged H-Ras (GFP-H-Ras). To address this question, we employed advanced techniques, including cell trapping by optical tweezers and live-cell imaging by 4D spinning-disk confocal microscopy. First, we showed that TNTs can form after optically trapped conjugated B and T cells are being pulled apart. Next, we determined by measuring fluorescence recovery after photobleaching that GFP-H-Ras diffuses freely in the membrane of TNTs that form spontaneously between B and T cells during coculturing. Importantly, by 4D time-lapse imaging, we showed that GFP-H-Ras-enriched PM patches accumulate at the junction between TNTs and the T-cell body and subsequently transfer to the T-cell surface. Furthermore, the PM patches adopted by T cells were enriched for another B-cell-derived transmembrane receptor, CD86. As predicted, the capacity of GFP-H-Ras to transfer between B and T cells, during coculturing, was dependent on its normal post-transcriptional lipidation and consequent PM anchorage. In summary, our data indicate that TNTs connecting B and T cells provide a hitherto undescribed route for the transfer of PM patches containing, for example, H-Ras from B to T cells.
淋巴细胞通过各种机制形成细胞间连接,包括通过肌动蛋白支持的长程质膜 (PM) 延伸形成细胞间网络,称为隧道纳米管 (TNT)。在这项研究中,我们在体外测试了 TNT 是否可以在细胞接触后在人抗原呈递 B 细胞和 T 细胞之间形成,以及它们是否能够转移 PM 相关蛋白,例如 GFP 标记的 H-Ras (GFP-H-Ras)。为了解决这个问题,我们采用了先进的技术,包括通过光镊捕获细胞和通过 4D 旋转盘共聚焦显微镜进行活细胞成像。首先,我们表明,在用光学镊子捕获的共轭 B 和 T 细胞被拉开时,可以形成 TNT。接下来,我们通过测量光漂白后荧光恢复来确定 GFP-H-Ras 在 B 和 T 细胞共培养过程中自发形成的 TNT 中自由扩散。重要的是,通过 4D 延时成像,我们表明 GFP-H-Ras 富集的 PM 斑块在 TNT 与 T 细胞体的连接处积累,并随后转移到 T 细胞表面。此外,T 细胞采用的 PM 斑块富含另一种 B 细胞衍生的跨膜受体 CD86。正如预测的那样,GFP-H-Ras 在共培养期间在 B 和 T 细胞之间转移的能力依赖于其正常的转录后脂质化和随后的 PM 锚定。总之,我们的数据表明,连接 B 和 T 细胞的 TNT 为从 B 细胞向 T 细胞转移包含例如 H-Ras 的 PM 斑块提供了一种迄今为止尚未描述的途径。