Suppr超能文献

人胚脑组织来源的神经干细胞通过缝隙连接通讯和形成隧道纳米管来拯救缺血性神经元细胞。

Human neural stem cells derived from fetal human brain communicate with each other and rescue ischemic neuronal cells through tunneling nanotubes.

机构信息

Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy.

Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy.

出版信息

Cell Death Dis. 2024 Sep 1;15(8):639. doi: 10.1038/s41419-024-07005-w.

Abstract

Pre-clinical trials have demonstrated the neuroprotective effects of transplanted human neural stem cells (hNSCs) during the post-ischemic phase. However, the exact neuroprotective mechanism remains unclear. Tunneling nanotubes (TNTs) are long plasma membrane bridges that physically connect distant cells, enabling the intercellular transfer of mitochondria and contributing to post-ischemic repair processes. Whether hNSCs communicate through TNTs and their role in post-ischemic neuroprotection remains unknown. In this study, non-immortalized hNSC lines derived from fetal human brain tissues were examined to explore these possibilities and assess the post-ischemic neuroprotection potential of these hNSCs. Using Tau-STED super-resolution confocal microscopy, live cell time-lapse fluorescence microscopy, electron microscopy, and direct or non-contact homotypic co-cultures, we demonstrated that hNSCs generate nestin-positive TNTs in both 3D neurospheres and 2D cultures, through which they transfer functional mitochondria. Co-culturing hNSCs with differentiated SH-SY5Y (dSH-SY5Y) revealed heterotypic TNTs allowing mitochondrial transfer from hNSCs to dSH-SY5Y. To investigate the role of heterotypic TNTs in post-ischemic neuroprotection, dSH-SY5Y were subjected to oxygen-glucose deprivation (OGD) followed by reoxygenation (OGD/R) with or without hNSCs in direct or non-contact co-cultures. Compared to normoxia, OGD/R dSH-SY5Y became apoptotic with impaired electrical activity. When OGD/R dSH-SY5Y were co-cultured in direct contact with hNSCs, heterotypic TNTs enabled the transfer of functional mitochondria from hNSCs to OGD/R dSH-SY5Y, rescuing them from apoptosis and restoring the bioelectrical profile toward normoxic dSH-SY5Y. This complete neuroprotection did not occur in the non-contact co-culture. In summary, our data reveal the presence of a functional TNTs network containing nestin within hNSCs, demonstrate the involvement of TNTs in post-ischemic neuroprotection mediated by hNSCs, and highlight the strong efficacy of our hNSC lines in post-ischemic neuroprotection. Human neural stem cells (hNSCs) communicate with each other and rescue ischemic neurons through nestin-positive tunneling nanotubes (TNTs). A Functional mitochondria are exchanged via TNTs between hNSCs. B hNSCs transfer functional mitochondria to ischemic neurons through TNTs, rescuing neurons from ischemia/reperfusion ROS-dependent apoptosis.

摘要

临床前试验已经证明了在缺血后阶段移植的人神经干细胞(hNSC)的神经保护作用。然而,确切的神经保护机制尚不清楚。隧道纳米管(TNT)是长的质膜桥,物理连接远处的细胞,使线粒体在细胞间转移,并有助于缺血后修复过程。hNSC 是否通过 TNT 进行通讯及其在缺血后神经保护中的作用尚不清楚。在这项研究中,我们检查了源自胎儿人脑组织的非永生化 hNSC 系,以探讨这些可能性,并评估这些 hNSC 的缺血后神经保护潜力。使用 Tau-STED 超分辨率共聚焦显微镜、活细胞延时荧光显微镜、电子显微镜以及直接或非接触同型共培养,我们证明 hNSC 在 3D 神经球和 2D 培养物中均产生巢蛋白阳性的 TNT,通过这些 TNT 转移功能线粒体。将 hNSC 与分化的 SH-SY5Y(dSH-SY5Y)共培养显示异质 TNT 允许线粒体从 hNSC 转移到 dSH-SY5Y。为了研究异质 TNT 在缺血后神经保护中的作用,将 dSH-SY5Y 进行氧葡萄糖剥夺(OGD),然后再进行再氧合(OGD/R),同时在直接或非接触共培养中存在或不存在 hNSC。与常氧相比,OGD/R dSH-SY5Y 凋亡并丧失电活性。当 OGD/R dSH-SY5Y 与 hNSC 直接共培养时,异质 TNT 使功能线粒体从 hNSC 转移到 OGD/R dSH-SY5Y,使其免于凋亡并使生物电谱恢复到正常氧合的 dSH-SY5Y。这种完全的神经保护在非接触共培养中并未发生。总之,我们的数据揭示了 hNSC 中存在含有巢蛋白的功能性 TNT 网络,证明了 TNT 参与了由 hNSC 介导的缺血后神经保护,并突出了我们的 hNSC 系在缺血后神经保护中的强大功效。人神经干细胞(hNSC)通过巢蛋白阳性的隧道纳米管(TNT)相互通讯并拯救缺血神经元。A 通过 TNT 在 hNSC 之间交换功能性线粒体。B hNSC 通过 TNT 将功能性线粒体转移到缺血神经元,使神经元免于缺血/再灌注 ROS 依赖性凋亡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a0e/11365985/c0116a1e48de/41419_2024_7005_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验