Suppr超能文献

眼眶肿物的扩散加权成像:多机构数据支持采用双表观扩散系数(2-ADC)阈值模型对病变进行良性、恶性或不确定分类。

Diffusion-weighted imaging of orbital masses: multi-institutional data support a 2-ADC threshold model to categorize lesions as benign, malignant, or indeterminate.

作者信息

Sepahdari A R, Politi L S, Aakalu V K, Kim H J, Razek A A K Abdel

机构信息

Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.

出版信息

AJNR Am J Neuroradiol. 2014 Jan;35(1):170-5. doi: 10.3174/ajnr.A3619. Epub 2013 Jul 18.

Abstract

BACKGROUND AND PURPOSE

DWI has been increasingly used to characterize orbital masses and provides quantitative information in the form of the ADC, but studies of DWI of orbital masses have shown a range of reported sensitivities, specificities, and optimal threshold ADC values for distinguishing benign from malignant lesions. Our goal was to determine the optimal use of DWI for imaging orbital masses through aggregation of data from multiple centers.

MATERIALS AND METHODS

Source data from 3 previous studies of orbital mass DWI were aggregated, and additional published data points were gathered. Receiver operating characteristic analysis was performed to determine the sensitivity, specificity, and optimal ADC thresholds for distinguishing benign from malignant masses.

RESULTS

There was no single ADC threshold that characterized orbital masses as benign or malignant with high sensitivity and specificity. An ADC of less than 0.93 × 10(-3) mm(2)/s was more than 90% specific for malignancy, and an ADC of less than 1.35 × 10(-3) mm(2)/s was more than 90% sensitive for malignancy. With these 2 thresholds, 33% of this cohort could be characterized as "likely malignant," 29% as "likely benign," and 38% as "indeterminate."

CONCLUSIONS

No single ADC threshold is highly sensitive and specific for characterizing orbital masses as benign or malignant. If we used 2 thresholds to divide these lesions into 3 categories, however, a majority of orbital masses can be characterized with >90% confidence.

摘要

背景与目的

弥散加权成像(DWI)越来越多地用于眼眶肿物的特征性分析,并以表观扩散系数(ADC)的形式提供定量信息,但关于眼眶肿物的DWI研究显示,在区分良性与恶性病变时,其报道的敏感性、特异性及最佳ADC阈值范围各不相同。我们的目标是通过汇总多个中心的数据来确定DWI在眼眶肿物成像中的最佳应用。

材料与方法

汇总之前3项眼眶肿物DWI研究的源数据,并收集其他已发表的数据点。进行受试者操作特征分析,以确定区分良性与恶性肿物的敏感性、特异性及最佳ADC阈值。

结果

没有单一的ADC阈值能以高敏感性和特异性将眼眶肿物定性为良性或恶性。ADC小于0.93×10⁻³mm²/s对恶性病变的特异性超过90%,ADC小于1.35×10⁻³mm²/s对恶性病变的敏感性超过90%。根据这两个阈值,该队列中33%可定性为“可能恶性”,29%为“可能良性”,38%为“不确定”。

结论

没有单一的ADC阈值能以高敏感性和特异性将眼眶肿物定性为良性或恶性。然而,如果使用两个阈值将这些病变分为三类,则大多数眼眶肿物可以有>90%的把握进行定性。

相似文献

2
Orbital masses: the usefulness of diffusion-weighted imaging in lesion categorization.
Clin Neuroradiol. 2014 Jun;24(2):129-34. doi: 10.1007/s00062-013-0234-x. Epub 2013 Jul 12.
3
The roles of the diffusion-weighted imaging in orbital masses.
J Med Imaging Radiat Oncol. 2017 Dec;61(6):753-758. doi: 10.1111/1754-9485.12627. Epub 2017 Jun 30.
4
Role of Quantitative Diffusion-Weighted Imaging in Differentiating Benign and Malignant Orbital Masses.
Indian J Radiol Imaging. 2021 Jan;31(1):102-108. doi: 10.1055/s-0041-1730120. Epub 2021 May 23.
6
MRI of Pediatric Orbital Masses: Role of Quantitative Diffusion-weighted Imaging in Differentiating Benign from Malignant Lesions.
Clin Neuroradiol. 2020 Sep;30(3):615-624. doi: 10.1007/s00062-019-00790-4. Epub 2019 May 27.
7
Characterization of orbital masses by multiparametric MRI.
Eur J Radiol. 2016 Feb;85(2):324-36. doi: 10.1016/j.ejrad.2015.11.041. Epub 2015 Dec 4.
10
Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI.
Eur J Radiol. 2013 Dec;82(12):e782-9. doi: 10.1016/j.ejrad.2013.08.006. Epub 2013 Aug 13.

引用本文的文献

1
Assessing MRI interpretability of the orbit, paranasal sinuses, and nasopharynx in cochlear implant patients.
Front Neurol. 2025 Jul 31;16:1636128. doi: 10.3389/fneur.2025.1636128. eCollection 2025.
2
Magnetic resonance diffusion-weighted imaging in lacrimal gland lymphoma versus inflammation: A comparative study.
Indian J Ophthalmol. 2024 Oct 1;72(10):1448-1452. doi: 10.4103/IJO.IJO_2109_23. Epub 2024 Sep 27.
3
Radiopathological Correlation in Orbital Lesions.
Middle East Afr J Ophthalmol. 2024 Jun 14;30(2):98-102. doi: 10.4103/meajo.meajo_7_23. eCollection 2023 Apr-Jun.
6
Orbital inflammatory pseudotumor: new advances in diagnosis, pathogenesis, and treatment.
Eur J Med Res. 2023 Oct 4;28(1):395. doi: 10.1186/s40001-023-01330-0.
7
Arterial Spin-Labeling in the Assessment of Pediatric Nontraumatic Orbital Lesions.
AJNR Am J Neuroradiol. 2023 Oct;44(10):1219-1223. doi: 10.3174/ajnr.A7977. Epub 2023 Aug 31.
9
MR-based follow-up after brachytherapy and proton beam therapy in uveal melanoma.
Neuroradiology. 2023 Aug;65(8):1271-1285. doi: 10.1007/s00234-023-03166-1. Epub 2023 May 30.
10
Accuracy between clinical and radiological diagnoses compared to surgical orbital biopsies.
Int J Ophthalmol. 2023 Apr 18;16(4):616-622. doi: 10.18240/ijo.2023.04.16. eCollection 2023.

本文引用的文献

1
MRI study of solitary fibrous tumor in the orbit.
AJR Am J Roentgenol. 2012 Oct;199(4):W506-11. doi: 10.2214/AJR.11.8477.
2
Diffusion-weighted imaging of malignant ocular masses: initial results and directions for further study.
AJNR Am J Neuroradiol. 2012 Feb;33(2):314-9. doi: 10.3174/ajnr.A2747. Epub 2011 Nov 24.
3
Single-shot turbo spin-echo diffusion-weighted imaging for retinoblastoma: initial experience.
AJNR Am J Neuroradiol. 2012 Jan;33(1):110-8. doi: 10.3174/ajnr.A2729. Epub 2011 Oct 27.
5
Differentiation between benign and malignant orbital tumors at 3-T diffusion MR-imaging.
Neuroradiology. 2011 Jul;53(7):517-22. doi: 10.1007/s00234-011-0838-2. Epub 2011 Feb 1.
6
Diffusion-weighted magnetic resonance imaging of head and neck.
J Comput Assist Tomogr. 2010 Nov-Dec;34(6):808-15. doi: 10.1097/RCT.0b013e3181f01796.
7
MRI in diagnosis of orbital masses.
Curr Eye Res. 2010 Nov;35(11):986-91. doi: 10.3109/02713683.2010.506966.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验