Laboratoire d'Informatique Fondamentale de Lille-LIFL, UMR CNRS 8022, Institut Mines-Télécom, Villeneuve d'Ascq, France.
IEEE Trans Pattern Anal Mach Intell. 2013 Sep;35(9):2270-83. doi: 10.1109/TPAMI.2013.48.
We propose a novel geometric framework for analyzing 3D faces, with the specific goals of comparing, matching, and averaging their shapes. Here we represent facial surfaces by radial curves emanating from the nose tips and use elastic shape analysis of these curves to develop a Riemannian framework for analyzing shapes of full facial surfaces. This representation, along with the elastic Riemannian metric, seems natural for measuring facial deformations and is robust to challenges such as large facial expressions (especially those with open mouths), large pose variations, missing parts, and partial occlusions due to glasses, hair, and so on. This framework is shown to be promising from both--empirical and theoretical--perspectives. In terms of the empirical evaluation, our results match or improve upon the state-of-the-art methods on three prominent databases: FRGCv2, GavabDB, and Bosphorus, each posing a different type of challenge. From a theoretical perspective, this framework allows for formal statistical inferences, such as the estimation of missing facial parts using PCA on tangent spaces and computing average shapes.
我们提出了一个新颖的 3D 人脸分析几何框架,旨在比较、匹配和平均他们的形状。在这里,我们通过从鼻尖发出的径向曲线来表示面部表面,并使用这些曲线的弹性形状分析来开发一个用于分析整个面部表面形状的黎曼几何框架。这种表示形式以及弹性黎曼度量对于测量面部变形似乎很自然,并且对于大的面部表情(尤其是张大嘴巴的表情)、大的姿势变化、缺失部分以及由于眼镜、头发等造成的部分遮挡等挑战具有鲁棒性。从经验和理论两个方面来看,该框架都很有前途。从经验评估的角度来看,我们的结果在三个知名数据库(FRGCv2、GavabDB 和 Bosphorus)上与最先进的方法相匹配或有所改进,每个数据库都提出了不同类型的挑战。从理论角度来看,该框架允许进行正式的统计推断,例如使用切空间上的 PCA 估计缺失的面部部分以及计算平均形状。