Zeng Xiangrui, Xu Min
Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2020 Jun;2020:4072-4082. doi: 10.1109/cvpr42600.2020.00413. Epub 2020 Aug 5.
We propose a Geometric unsupervised matching Network (Gum-Net) for finding the geometric correspondence between two images with application to 3D subtomogram alignment and averaging. Subtomogram alignment is the most important task in cryo-electron tomography (cryo-ET), a revolutionary 3D imaging technique for visualizing the molecular organization of unperturbed cellular landscapes in single cells. However, subtomogram alignment and averaging are very challenging due to severe imaging limits such as noise and missing wedge effects. We introduce an end-to-end trainable architecture with three novel modules specifically designed for preserving feature spatial information and propagating feature matching information. The training is performed in a fully unsupervised fashion to optimize a matching metric. No ground truth transformation information nor category-level or instance-level matching supervision information is needed. After systematic assessments on six real and nine simulated datasets, we demonstrate that Gum-Net reduced the alignment error by 40 to 50% and improved the averaging resolution by 10%. Gum-Net also achieved 70 to 110 times speedup in practice with GPU acceleration compared to state-of-the-art subtomogram alignment methods. Our work is the first 3D unsupervised geometric matching method for images of strong transformation variation and high noise level. The training code, trained model, and datasets are available in our open-source software AITom.
我们提出了一种几何无监督匹配网络(Gum-Net),用于寻找两幅图像之间的几何对应关系,并将其应用于三维亚断层图像对齐和平均化。亚断层图像对齐是冷冻电子断层扫描(cryo-ET)中最重要的任务,cryo-ET是一种革命性的三维成像技术,用于可视化单个细胞中未受干扰的细胞景观的分子组织。然而,由于严重的成像限制,如噪声和缺失楔形效应,亚断层图像对齐和平均化极具挑战性。我们引入了一种端到端可训练架构,该架构具有三个专门设计的新颖模块,用于保留特征空间信息和传播特征匹配信息。训练以完全无监督的方式进行,以优化匹配度量。无需真实变换信息,也无需类别级或实例级匹配监督信息。在对六个真实数据集和九个模拟数据集进行系统评估后,我们证明Gum-Net将对齐误差降低了40%至50%,并将平均分辨率提高了10%。与最先进的亚断层图像对齐方法相比,在GPU加速的情况下,Gum-Net在实际应用中还实现了70至110倍的加速。我们的工作是第一种针对具有强烈变换变化和高噪声水平的图像的三维无监督几何匹配方法。训练代码、训练模型和数据集可在我们的开源软件AITom中获取。