Suppr超能文献

基于 3D 人脸和 3D 耳朵的多模态生物识别的分数级融合。

Score-Level Fusion of 3D Face and 3D Ear for Multimodal Biometric Human Recognition.

机构信息

School of Computer Science, Dr. Vishwanath Karad MIT World Peace University, S. No. 124, Paud Road, Kothrud, Pune 411038, Maharashtra, India.

Manipal University Jaipur, Jaipur, India.

出版信息

Comput Intell Neurosci. 2022 Apr 14;2022:3019194. doi: 10.1155/2022/3019194. eCollection 2022.

Abstract

A novel multimodal biometric system is proposed using three-dimensional (3D) face and ear for human recognition. The proposed model overcomes the drawbacks of unimodal biometric systems and solves the 2D biometric problems such as occlusion and illumination. In the proposed model, initially, the principal component analysis (PCA) is utilized for 3D face recognition. Thereafter, the iterative closest point (ICP) is utilized for 3D ear recognition. Finally, the 3D face is fused with a 3D ear using score-level fusion. The simulations are performed on the Face Recognition Grand Challenge database and the University of Notre Dame Collection F database for 3D face and 3D ear datasets, respectively. Experimental results reveal that the proposed model achieves an accuracy of 99.25% using the proposed score-level fusion. Comparative analyses show that the proposed method performs better than other state-of-the-art biometric algorithms in terms of accuracy.

摘要

提出了一种使用三维(3D)人脸和耳朵进行人体识别的新型多模态生物识别系统。所提出的模型克服了单模态生物识别系统的缺点,并解决了二维生物识别系统的遮挡和光照等问题。在所提出的模型中,首先利用主成分分析(PCA)进行 3D 人脸识别。然后,利用迭代最近点(ICP)进行 3D 耳朵识别。最后,使用分数级融合将 3D 人脸与 3D 耳朵融合。分别在人脸识别大挑战数据库和圣母大学 3D 人脸数据集和 3D 耳朵数据集上进行了仿真。实验结果表明,使用所提出的分数级融合,所提出的模型的准确率达到 99.25%。对比分析表明,该方法在准确性方面优于其他最先进的生物识别算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0767/9023189/737f7fa1271d/CIN2022-3019194.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验